Overview of Cori

Sudip Dosanjh Director

November 21, 2014

- Edison is a HPCS demo system (serial #1)
- First Cray Petascale system with Intel processors, Aries interconnect and Dragonfly topology
- Very high memory bandwidth (100 GB/s per node), interconnect bandwidth and bisection bandwidth
- 64 GB/node
- Exceptional application performance

- Edison doesn't deploy accelerators or GPUs
- Disruptions in programming models are a challenge for NERSC
 - Many users
 - Many codes
 - We don't select our users

- 5000 users, and we typically add 350 per year
- Geographically distributed: 47 states as well as multinational projects

NERSC Users at ASCAC Institutions

- Boston University 2
- New York University 4 Rice University 33
- University of Houston 26 LLNL–77
- Google Inc. 0
- Sandia National Lab 69
- **University of Tennessee 50**
- **University of Michigan -60**
- Microsoft Research 0
- **Pittsburgh Supercomputer** Center – 0 (CMU: 15 - U
 - Pittsburgh: 3)
- MIT- 120
- UC Merced 4

UC Santa Barbara – 39

Total: 467

- Many codes (600+) and algorithms
- Computing at scale and at high volume

Science

We directly support DOE's science mission

- We are the primary computing facility for DOE Office of Science
- DOE SC allocates the vast majority of the computing and storage resources at NERSC
 - Six program offices allocate their base allocations and they submit proposals for overtargets
 - Deputy Director of Science prioritizes overtarget requests
- Usage shifts as DOE priorities change

- Heightened awareness among application teams
- Many codes are being adapted for next generation systems
- Technology changes (e.g., self-hosted many core chips, tighter CPU/GPU integration) will make the transition easier
- We must transition to energy efficient architectures to meet the science needs of our users

Keeping up with user needs will be a challenge

Compute Hours at NERSC

NERSC Supports Science Needs at Many Difference Scales and Sizes

NERSC needs to transition to energy efficient architectures

Manycore or Hybrid is the only approach that crosses the exascale finish line

NERSC-8 (Cori) Mission Need

The Department of Energy Office of Science requires an HPC system to support the rapidly increasing computational demands of the entire spectrum of DOE SC computational research.

- Provide a significant increase in computational capabilities, at least 10 times the sustained performance of the Hopper system on a set of representative DOE benchmarks
- Delivery in the 2015/2016 time frame
- Provide high bandwidth access to existing data stored by continuing research projects.
- Platform needs to begin to transition users to more energyefficient many-core architectures.

ACES and NERSC formed a partnership for next-generation supercomputers

- Visible collaboration between ASCR and ASC
- Strengthen impact on industry
- Address challenges transitioning applications to advanced manycore architectures with a broader coalition
- Act as a risk mitigation strategy for NERSC-8 and Trinity systems by having a partner to work with on technical challenges deploying and testing NERSC-8 and Trinity

Alliance for application Performance at the EXtreme scale (APEX)

This was a collaboration of two separate projects

The Cori system

64 Cabinets of Cray XC System

- Over 9,300 'Knights Landing' compute nodes
 - 64-128 GB memory per node
- Over 1900 'Haswell' compute nodes
 - Data partition
- 14 external login nodes
- Aries Interconnect (same as on Edison)
- > 10x Hopper sustained performance using NERSC SSP metric
- Lustre File system
 - 28 PB capacity, 432 GB/sec peak performance
- NVRAM "Burst Buffer" for I/O acceleration
- Significant Intel and Cray application transition support
- Delivery in mid-2016; installation in new LBNL CRT

Intel "Knights Landing" Processor

- Next generation Xeon-Phi, >3TF peak
- Single socket processor Self-hosted, not a co-processor, not an accelerator
- Greater than 60 cores per processor with support for four hardware threads each; more cores than current generation Intel Xeon Phi™
- Intel® "Silvermont" architecture enhanced for high performance computing
- 512b vector units (32 flops/clock AVX 512)
- 3X single-thread performance over current generation Xeon-Phi coprocessor
- High bandwidth on-package memory, up to 16GB capacity with bandwidth projected to be 5X that of DDR4 DRAM memory
- Higher performance per watt

Cori will be installed in the Computational Research and Theory (CRT) Facility

Four story, 140,000 GSF

- 300 offices on two floors
- 20K -> 29Ksf HPC floor
- 12.5MW -> 40 MW to building

Located for collaboration

- CRD and ESnet
- UC Berkeley

Exceptional energy efficiency

- Natural air and water cooling
- Heat recovery
- PUE < 1.1
- LEED gold design
- Initial occupancy early 2015

Application Readiness --- Challenges and Strategy

We will initially focus on 20 codes

Breakdown of Application Hours on Hopper and Edison 2013

- 10 codes make up 50% of the workload
- 25 codes make up 66% of the workload
- Edison will be available until 2019/2020
- Training and lessons learned will be made available to all application teams

We are launching the NERSC Exascale Science Applications Program (NESAP)

NESAP components:

Advanced Scientific Computing Research

Almgren (LBNL) - BoxLib AMR Framework Trebotich (LBNL) - Chombocrunch

High Energy Physics

Vay (LBNL) - WARP & **IMPACT**

Toussaint(Arizona) – MILC Habib (ANL) - HACC

Nuclear Physics

Maris (Iowa St.) - MFDn Joo (JLAB) - Chroma Christ/Karsch (Columbia/BNL) - DWF/HISQ

Basic Energy Sciences

Kent (ORNL) - Quantum **Espresso**

Deslippe (NERSC) - BerkeleyGW

Chelikowsky (UT) – PARSEC

Bylaska (PNNL) - NWChem

Newman (LBNL) - EMGeo

Biological and Environmental Research

Smith (ORNL) - Gromacs Yelick (LBNL) - Meraculous

Ringler (LANL) - MPAS-O

Johansen (LBNL) - ACME

Dennis (NCAR) – **CESM**

Fusion Energy Sciences

Jardin (PPPL) - M3D Chang (PPPL) -XGC1

Comparison of Selected Apps with 2013 Usage

The Selected Codes are Diverse in Several Dimensions

Almost all others

production codes *vs.* up and coming

MPAS-O ACME PARSEC

HACC, Chroma, MILC, BerkeleyGW, XGC

Higher vs. lower readiness

M3D, CESM, EMgeo, WARP & Synergia, Crunch

EMGeo, WARP, Meraculous, Chombo-crunch, BoxLib Smaller community apps vs
Overlap with established ALCF/
OLCF readiness codes

MILC, CESM, Chroma, HISQ/DWF, Gromacs, QE, NWChem

NESAP has already received recognition

NESAP Intel and Cray collaboration improved BerkeleyGW performance

Thread Scaling in BerkeleyGW GPP Kernel on Xeon-Phi

BerkeleyGW FF Kernel Runtimes on Xeon and Xeon-Phi

NESAP (Cray COE and Intel Dungeon Session) advances for BerkeleyGW kernels include:

- 1. Thread scaling improvements beyond 10 threads
- 2. Addition of cache-blocking in bandwidth-bound kernels
- 3. Improved vectorization in kernels (including small matmuls)

Extreme Data Science

Science

DOE Facilities are Facing a Data Deluge

Exponentially increasing data traffic

NERSC users import more data than they export!

Extreme Data Science is Playing a Key Role in Scientific Discovery

- Measurement of the important " θ_{13} " neutrino parameter. One of Science Magazine's Top-Ten Breakthroughs of 2012.
 - Last and most elusive piece of a longstanding puzzle: why neutrinos appear to vanish as they travel
- The Palomar Transient Factory Discovered over 2000 supernovae in the last 5 years, including the youngest and closest Type Ia supernova in past 40 years
- Trillions of measurements by the Planck satellite led to the most detailed maps ever of cosmic microwave background (One of Physics Today's Top 10 breakthroughs of 2013)
- Materials project has over 5000 users and was featured on the cover of Scientific American

We currently deploy separate Compute Intensive and Data Intensive Systems

Compute Intensive

Data Intensive

PDSF

The Need for Data Intensive Systems

- Communicate with databases / host databases
- Complex workflows (including High Throughput Computing -HTC)
- Policy flexibility
- Local disk
- Very large memory
- Massive serial jobs (~100K)
- Easy to customize environment and the environment is familiar
- Dramatically growing data sets require Petascale+ computing for analysis
- In addition, we increasingly need to couple largescale simulations and data analysis

Baryon Acoustic Oscillations (BAO):

Large quantities of data need to be analyzed.

Imaging survey in 2005: 20 TB in 2025 60 PB

Statistical analyses need MCMC for crosscorrelation of the millions of galaxies -- collapsing the problem to just 2-point statistics.

All data analysis dependent on comparisons to supercomputerbased N-body simulations of the evolution of matter in the

Current state of art: 2048³ – 4096³ "particles." Need an order of magnitude more.

Cosmic Microwave Background (CMB):

Exponentially growing data chasing fainter echos:

- BOOMERanG: 10⁹ samples in 2000
- Planck: 10¹² samples in 2013 (0.5 PB)
- CMBpol: 10¹⁵ samples in 2025

Uncertainty quantification through Monte Carlos

- Simulate 10⁴ realizations of the entire mission
- Control both systematics and statistics

Mission-class science relies on HPC evolution.

- Data partition with large memory nodes and throughput optimized processors
- Burst buffer -- NVRAM nodes on the interconnect fabric for IO caching
- Larger disk system

Goals are to enable the analysis of large experimental data sets and insitu analysis coupled to Petascale simulations

Popular features of a data intensive system can be supported on Cori

Data Intensive Workload Need	Cori Solution
Local Disk	NVRAM 'burst buffer'
Large memory nodes	128 GB/node on Haswell; Option to purchase fat (1TB) login node
Massive serial jobs	NERSC serial queue prototype on Edison; MAMU
Complex workflows	More (14) external login nodes; CCM mode for now
Communicate with databases from compute nodes	Compute Gateway Node
Stream Data from observational facilities	Compute Gateway Node
Easy to customize environment	User Defined Images
Policy Flexibility	Improvements coming with Cori: Rolling upgrades, CCM, MAMU, above COEs would also contribute

Conclusions

The Cori System

Our goal is to enable science that can't be done on today's supercomputers

Science

