Overview of Cori

Sudip Dosanjh
Director

November 21, 2014
NERSC’s latest system is Edison

- Edison is a HPCS demo system (serial #1)
- First Cray Petascale system with Intel processors, Aries interconnect and Dragonfly topology
- Very high memory bandwidth (100 GB/s per node), interconnect bandwidth and bisection bandwidth
- 64 GB/node
- Exceptional application performance
• Edison doesn’t deploy accelerators or GPUs
• Disruptions in programming models are a challenge for NERSC
 – Many users
 – Many codes
 – We don’t select our users
We support a broad user base

- 5000 users, and we typically add 350 per year
- Geographically distributed: 47 states as well as multinational projects
NERSC Users at ASCAC Institutions

- Boston University – 2
- New York University - 4
- University of Houston – 26
- Google Inc. – 0
- Sandia National Lab – 69
- University of Tennessee – 50
- University of Michigan -60
- Microsoft Research – 0
- Pittsburgh Supercomputer Center – 0 (CMU: 15 - U Pittsburgh: 3)
- MIT– 120
- UC Merced – 4
- UC Santa Barbara – 39
- Rice University – 33
- LLNL– 77
- Total: 467
We support a diverse workload

- Many codes (600+) and algorithms
- Computing at scale and at high volume

![Job Size Breakdown on Edison](image)

- 65,536+ cores
- 16,384-65,535 cores
- 8,192-16,383 cores
- 1,024-8,191 cores
- 1-1,023 cores
We directly support DOE’s science mission

• We are the primary computing facility for DOE Office of Science

• DOE SC allocates the vast majority of the computing and storage resources at NERSC
 – Six program offices allocate their base allocations and they submit proposals for overtargets
 – Deputy Director of Science prioritizes overtarget requests

• Usage shifts as DOE priorities change
What’s changed for Cori?

• Heightened awareness among application teams
• Many codes are being adapted for next generation systems
• Technology changes (e.g., self-hosted many core chips, tighter CPU/GPU integration) will make the transition easier
• We must transition to energy efficient architectures to meet the science needs of our users
Keeping up with user needs will be a challenge
NERSC Supports Science Needs at Many Difference Scales and Sizes

High Throughput: Statistics, Systematics, Analysis, UQ

Larger Physical Systems, Higher Fidelity

<table>
<thead>
<tr>
<th>Core-Hours Used (Millions)</th>
<th>1-31</th>
<th>32-63</th>
<th>64-511</th>
<th>512-1K</th>
<th>1K-4K</th>
<th>4K-8K</th>
<th>8K-16K</th>
<th>16K-32K</th>
<th>32K-64K</th>
<th>65-128K</th>
<th>128K+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>675,233</td>
<td>30,991</td>
<td>123,776</td>
<td>15,672</td>
<td>14,618</td>
<td>1,604</td>
<td>826</td>
<td>667</td>
<td>202</td>
<td>56</td>
<td>15</td>
</tr>
<tr>
<td>Core-Hours</td>
<td>7</td>
<td>10.7</td>
<td>55</td>
<td>31</td>
<td>49</td>
<td>28</td>
<td>7</td>
<td>66</td>
<td>30</td>
<td>8.7</td>
<td>0.382</td>
</tr>
</tbody>
</table>

- 10 -
NERSC needs to transition to energy efficient architectures

Manycore or Hybrid is the only approach that crosses the exascale finish line
NERSC-8 (Cori) Mission Need

The Department of Energy Office of Science requires an HPC system to support the rapidly increasing computational demands of the entire spectrum of DOE SC computational research.

• Provide a significant increase in computational capabilities, at least 10 times the sustained performance of the Hopper system on a set of representative DOE benchmarks

• Delivery in the 2015/2016 time frame

• Provide high bandwidth access to existing data stored by continuing research projects.

• Platform needs to begin to transition users to more energy-efficient many-core architectures.
ACES and NERSC formed a partnership for next-generation supercomputers

- Visible collaboration between ASCR and ASC
- Strengthen impact on industry
- Address challenges transitioning applications to advanced manycore architectures with a broader coalition
- Act as a risk mitigation strategy for NERSC-8 and Trinity systems by having a partner to work with on technical challenges deploying and testing NERSC-8 and Trinity

Alliance for application Performance at the EXtreme scale (APEX)
This was a collaboration of two separate projects

Joint

NERSC-8 Mission Drivers

Market surveys

Creating requirements

Release RFP

Vendor Selection

Negotiations

Separate Contracts

Trinity System

NERSC-8 System

Trinity Mission Drivers

Joint Quarterly Reviews, bug reports, collaboration on application transition, advanced options
The Cori system
Cori Configuration

• **64 Cabinets of Cray XC System**
 – Over 9,300 ‘Knights Landing’ compute nodes
 • 64-128 GB memory per node
 – Over 1900 ‘Haswell’ compute nodes
 • Data partition
 – 14 external login nodes
 – Aries Interconnect (same as on Edison)
 – > 10x Hopper sustained performance using NERSC SSP metric

• **Lustre File system**
 – 28 PB capacity, 432 GB/sec peak performance

• **NVRAM “Burst Buffer” for I/O acceleration**

• **Significant Intel and Cray application transition support**

• **Delivery in mid-2016; installation in new LBNL CRT**
Intel “Knights Landing” Processor

- Next generation Xeon-Phi, >3TF peak
- Single socket processor - Self-hosted, not a co-processor, not an accelerator
- Greater than 60 cores per processor with support for four hardware threads each; more cores than current generation Intel Xeon Phi™
- Intel® "Silvermont" architecture enhanced for high performance computing
- 512b vector units (32 flops/clock – AVX 512)
- 3X single-thread performance over current generation Xeon-Phi co-processor
- High bandwidth on-package memory, up to 16GB capacity with bandwidth projected to be 5X that of DDR4 DRAM memory
- Higher performance per watt
Cori will be installed in the Computational Research and Theory (CRT) Facility

- **Four story, 140,000 GSF**
 - 300 offices on two floors
 - 20K -> 29Ksf HPC floor
 - 12.5MW -> 40 MW to building

- **Located for collaboration**
 - CRD and ESnet
 - UC Berkeley

- **Exceptional energy efficiency**
 - Natural air and water cooling
 - Heat recovery
 - PUE < 1.1
 - LEED gold design

- **Initial occupancy early 2015**
Application Readiness -- Challenges and Strategy
We will initially focus on 20 codes

- 10 codes make up 50% of the workload
- 25 codes make up 66% of the workload
- Edison will be available until 2019/2020
- Training and lessons learned will be made available to all application teams
We are launching the NERSC Exascale Science Applications Program (NESAP)

• NESAP components:
20 NESAP Tier-1 and Tier-2 codes

<table>
<thead>
<tr>
<th>Advanced Scientific Computing Research</th>
<th>Basic Energy Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almgren (LBL) – BoxLib AMR Framework</td>
<td>Kent (ORNL) – Quantum Espresso</td>
</tr>
<tr>
<td>Trebotich (LBL) – Chombo-crunch</td>
<td>Deslippe (NERSC) – BerkeleyGW</td>
</tr>
<tr>
<td></td>
<td>Chelikowsky (UT) – PARSEC</td>
</tr>
<tr>
<td></td>
<td>Bylaska (PNNL) – NWChem</td>
</tr>
<tr>
<td></td>
<td>Newman (LBL) – EMGeo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>High Energy Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vay (LBL) – WARP & IMPACT</td>
</tr>
<tr>
<td>Toussaint(Arizona) – MILC</td>
</tr>
<tr>
<td>Habib (ANL) – HACC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nuclear Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maris (Iowa St.) – MFDn</td>
</tr>
<tr>
<td>Joo (JLAB) – Chroma</td>
</tr>
<tr>
<td>Christ/Karsch (Columbia/BNL) – DWF/HISQ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biological and Environmental Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith (ORNL) – Gromacs</td>
</tr>
<tr>
<td>Yelick (LBL) – Meraculous</td>
</tr>
<tr>
<td>Ringler (LANL) – MPAS-O</td>
</tr>
<tr>
<td>Johansen (LBL) – ACME</td>
</tr>
<tr>
<td>Dennis (NCAR) – CESM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fusion Energy Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jardin (PPPL) – M3D</td>
</tr>
<tr>
<td>Chang (PPPL) – XGC1</td>
</tr>
</tbody>
</table>
Comparison of Selected Apps with 2013 Usage

Breakdown of Application Hours on Hopper and Edison 2013

Tier-1, 2 Code
Tier-3
Tier-1, 2 Proxy Code
Other Codes
The Selected Codes are Diverse in Several Dimensions

Almost all others

production codes vs. up and coming

MPAS-O
ACME
PARSEC

Higher vs. lower readiness

HACC, Chroma, MILC, BerkeleyGW, XGC

M3D, CESM, EMgeo, WARP & Synergia, Crunch

Smaller community apps vs Overlap with established ALCF/OLCF readiness codes

EMGeo, WARP, Meraculous, Chombo-crunch, BoxLib

MILC, CESM, Chroma, HISQ/DWF, Gromacs, QE, NWChem
NESAP has already received recognition
NESAP Intel and Cray collaboration improved BerkeleyGW performance

NESAP (Cray COE and Intel Dungeon Session) advances for BerkeleyGW kernels include:
1. Thread scaling improvements beyond 10 threads
2. Addition of cache-blocking in bandwidth-bound kernels
3. Improved vectorization in kernels (including small matmuls)
Extreme Data Science
DOE Facilities are Facing a Data Deluge

- Astronomy
- Genomics
- Climate
- Physics
- Light Sources
Exponentially increasing data traffic

NERSC daily routed WAN traffic since 2002

- First petabyte day expected in 2020
- Jump driven by data intensive applications
- Major improvements in TCP auto-tuning
NERSC users import more data than they export!

- Importing more than 1PB/month
- Exporting more than 1PB/month
Extreme Data Science is Playing a Key Role in Scientific Discovery

- **Measurement of the important** θ_{13} **neutrino parameter. One of Science Magazine’s Top-Ten Breakthroughs of 2012.**
 - Last and most elusive piece of a longstanding puzzle: why neutrinos appear to vanish as they travel

- The Palomar Transient Factory Discovered over 2000 supernovae in the last 5 years, including the youngest and closest Type Ia supernova in past 40 years

- Trillions of measurements by the Planck satellite led to the most detailed maps ever of cosmic microwave background (One of Physics Today’s Top 10 breakthroughs of 2013)

- Materials project has over 5000 users and was featured on the cover of Scientific American

SN 2011fe

Ph. Shri Kulkarni (Caltech)
We currently deploy separate Compute Intensive and Data Intensive Systems

Compute Intensive

Edison

Hopper

Data Intensive

Carver

Genepool

PDSF
The Need for Data Intensive Systems

- Communicate with databases / host databases
- Complex workflows (including High Throughput Computing - HTC)
- Policy flexibility
- Local disk
- Very large memory
- Massive serial jobs (~100K)
- Easy to customize environment and the environment is familiar

- Dramatically growing data sets require Petascale+ computing for analysis
- In addition, we increasingly need to couple large-scale simulations and data analysis
Baryon Acoustic Oscillations (BAO):

Large quantities of data need to be analyzed.

- Imaging survey in 2005: 20 TB
- in 2025: 60 PB

Statistical analyses need MCMC for cross-correlation of the millions of galaxies
-- collapsing the problem to just 2-point statistics.

All data analysis dependent on comparisons to supercomputer-based N-body simulations of the evolution of matter in the universe.

- Current state of art: $2048^3 - 4096^3$ “particles.”
- Need an order of magnitude more.
Cosmic Microwave Background (CMB):
Exponentially growing data chasing fainter echos:
- BOOMERanG: 10^9 samples in 2000
- Planck: 10^{12} samples in 2013 (0.5 PB)
- CMBpol: 10^{15} samples in 2025

Uncertainty quantification through Monte Carlos
- Simulate 10^4 realizations of the entire mission
- Control both systematics and statistics

Mission-class science relies on HPC evolution.
Cori Data Enhancements

- Data partition with large memory nodes and throughput optimized processors
- Burst buffer -- NVRAM nodes on the interconnect fabric for IO caching
- Larger disk system

Goals are to enable the analysis of large experimental data sets and in-situ analysis coupled to Petascale simulations
Popular features of a data intensive system can be supported on Cori

<table>
<thead>
<tr>
<th>Data Intensive Workload Need</th>
<th>Cori Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Disk</td>
<td>NVRAM ‘burst buffer’</td>
</tr>
<tr>
<td>Large memory nodes</td>
<td>128 GB/node on Haswell; Option to purchase fat (1TB) login node</td>
</tr>
<tr>
<td>Massive serial jobs</td>
<td>NERSC serial queue prototype on Edison; MAMU</td>
</tr>
<tr>
<td>Complex workflows</td>
<td>More (14) external login nodes; CCM mode for now</td>
</tr>
<tr>
<td>Communicate with databases from compute nodes</td>
<td>Compute Gateway Node</td>
</tr>
<tr>
<td>Stream Data from observational facilities</td>
<td>Compute Gateway Node</td>
</tr>
<tr>
<td>Easy to customize environment</td>
<td>User Defined Images</td>
</tr>
<tr>
<td>Policy Flexibility</td>
<td>Improvements coming with Cori: Rolling upgrades, CCM, MAMU, above COEs would also contribute</td>
</tr>
</tbody>
</table>
Conclusions
The Cori System

Cray XC40-LC 64 Cabinets, Aries Network

HASWELL COMPUTE (1,600+ NODES)

KNL COMPUTE (9,300+ NODES, 60+ CORES EACH, 64-128GB RAM, 16GB HIGH-BW MEMORY)

BURST BUFFER (1.5+ PB capacity, >1.5TB/sec B/W)

System Management
Compute Network Nodes
I/O Network Nodes (Internal & External)
Workload Management Support Nodes
Dynamic Shared Library Support Nodes
External IB Network
GigE Network
40 GE Network
10 GE Network
Storage System:
Parallel Filesystem (Lustre)
28+ PB
430+ GB/sec
Our goal is to enable science that can’t be done on today’s supercomputers

Martin Karplus

Saul Perlmutter

George Smoot

Warren Washington