

#### **Update on INCITE**

Paul C. Messina, Director of Science, ALCF and Julia C. White, INCITE Manager

whitejc@DOEleadershipcomputing.org

## **Origin of Leadership Computing Facility**

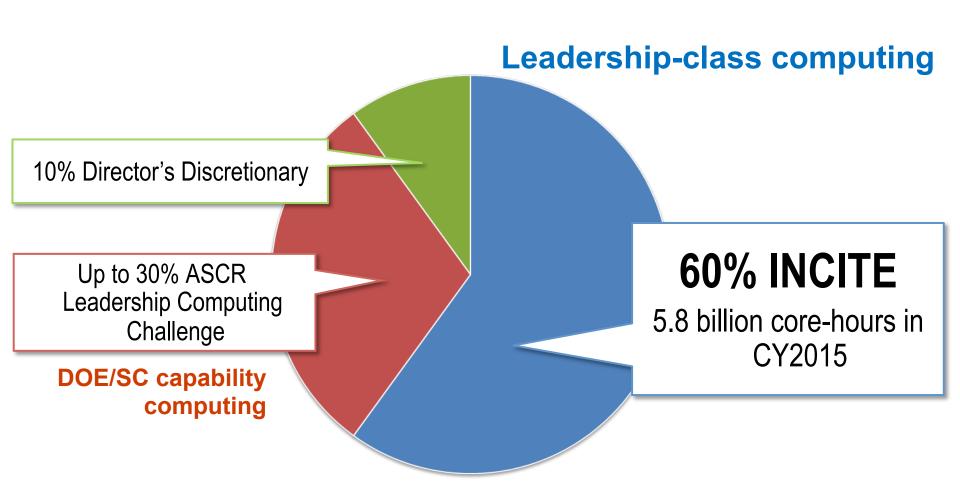
118 STAT. 2400

PUBLIC LAW 108-423-NOV. 30, 2004

Department of Energy High-End Computing Revitalization Act of 2004 (Public Law 108-423): The Secretary of Energy, acting through the Office of Science, shall

- Establish and operate Leadership Systems Facilities
- Provide access [to Leadership Systems Facilities] on a competitive, merit-reviewed basis to researchers in U.S. industry, institutions of higher education, national laboratories and other Federal agencies

|                                                                                                         | 108th Congress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nov. 30, 2004                                                                                           | An Act                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| [H.R. 4516]                                                                                             | To require the Secretary of Energy to carry out a program of research and develop-<br>ment to advance high-end computing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Department of<br>Energy High-End<br>Computing<br>Revitalization<br>Act of 2004.<br>15 USC 5501<br>note. | Be it enacted by the Senate and House of Representatives of<br>the United States of America in Congress assembled,<br>SECTION 1. SHORT TITLE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 15 USC 5541.                                                                                            | End Computing Revitalization Act of 2004".<br>SEC. 2. DEFINITIONS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| S<br>Dnal<br><sup>15 USC 5542.</sup> SEC.                                                               | <ul> <li>In this Act: <ol> <li>CENTER.—The term "Center" means a High-End Software Development Center established under section 3(d).</li> <li>High-END COMPUTING SYSTEM.—The term "high-end and the substantially exceeds that of system with performance that substantially exceeds that of systems that are compositions.</li> <li>LEADERSHIP SYSTEM.—The term "Leadership System" advanced in the world in terms of performance in solving sci.</li> <li>EADERSHIP SYSTEM.—The term "Leadership System" advanced in the world in terms of performance in solving sci.</li> <li>MASTITUTION OF HIGHER EDUCATION.—The term "instituen in section 101(a) of the Higher Education Act of 1965 (20 of Energy, acting through the Director of the Office of Sciences of the Department of Energy.</li> </ol> </li> <li>DEPARTMENT OF ENERGY HIGH-END COMMUTE</li> </ul> |
| h<br>ac<br>(b<br>pli                                                                                    | AND DEVELOPMENT PROGRAM.<br>a) IN GENERAL—The Secretary shall—<br>(1) carry out a program of research and development<br>igh-end computing systems; and<br>(2) develop and degloy high-end computing systems for<br>(2) develop and degloy high-end computing systems for<br>(3) develop and degloy high-end computing systems for<br>(4) approximation of the program shall—<br>(1) support both individual investigators and multidisci-<br>(2) conduct research in multiple architectures, which may<br>how only a configurable logic, streaming, processor-in-                                                                                                                                                                                                                                                                                                    |




#### **Titan and Mira**

|                            | INCITE Production Systems                          |                        |  |  |
|----------------------------|----------------------------------------------------|------------------------|--|--|
|                            | Cray XK7 "Titan"                                   | IBM Blue Gene/Q "Mira" |  |  |
| Node                       | 16-Core AMD 6274 Opteron<br>+ NVIDIA K20x (Kepler) | 16-Core PowerPC A2     |  |  |
| Compute Nodes              | 18,688 hybrid nodes                                | 49,152 nodes           |  |  |
| Compute Node configuration | 16 x86 cores + 14 GPU                              | 16 PPC64 Cores         |  |  |
| Aggregate Configuration    | 299,008 x86 Cores                                  | 786,432 PPC64 Cores    |  |  |
| Memory/Node                | 32 GB x86 + 6 GB K20x                              | 16 GB RAM per node     |  |  |
| Memory/Core                | 2 GB x86                                           | 1 GB                   |  |  |
| Interconnect               | Gemini                                             | 5D Torus               |  |  |
| GPUs                       | 18,688 K20x Keplers                                | None                   |  |  |
| Speed                      | 27 PF                                              | 10 PF                  |  |  |



#### **Three primary ways for access to LCF** Distribution of allocable hours





#### What is INCITE?

J.S. DEPARTMENT OF ENERGY

COMPUTING


RSHIP

#### Innovative and Novel Computational Impact on Theory and Experiment

INCITE promotes transformational advances in science and technology through large allocations of computer time, supporting resources, and data storage at the Argonne and Oak Ridge Leadership Computing Facilities (LCFs) for computationally intensive, large-scale research projects.



## **INCITE program organization**





## **INCITE criteria**

Access on a competitive, merit-reviewed basis\*

#### **1** Merit criterion

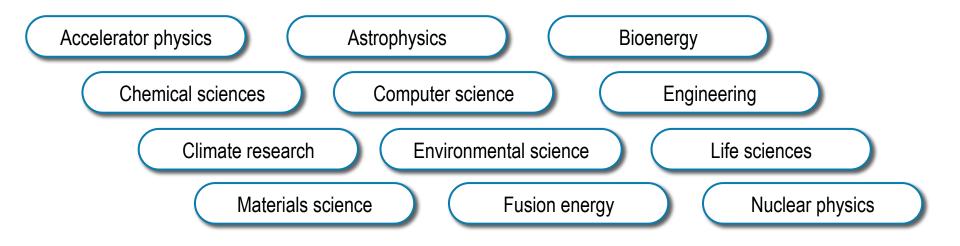
Research campaign with the potential for significant domain and/or community impact

#### **2** Computational leadership criterion

Computationally intensive runs that cannot be done anywhere else: *capability, architectural needs* 

#### **3** Eligibility criterion

- Grant allocations regardless of funding source\*
- Non-US-based researchers are welcome to apply


\*DOE High-End Computing Revitalization Act of 2004: Public Law 108-423



# **INCITE** is open to researchers around the world in a broad array of domains

No designated number of hours for a particular science area

Advancing the state of the art across a range of disciplines





## **INCITE** annual timeline

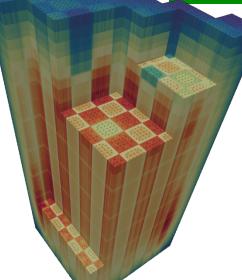


#### **INCITE breakthroughs since inception** A few of the many science and engineering advances

| Hours requested vs. allocated: ~2X per year ~3X per year                                                                                                                                                                                                                                                                                        |       |       |               |      |       |                                                   |       |                                             |                                       |         |       |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|---------------|------|-------|---------------------------------------------------|-------|---------------------------------------------|---------------------------------------|---------|-------|-------|
|                                                                                                                                                                                                                                                                                                                                                 |       |       |               |      |       | L                                                 |       |                                             | /                                     |         |       |       |
| Hours<br>allocated                                                                                                                                                                                                                                                                                                                              | 4.9 M | 6.5 M | 18.2 M        | 95 M | 268 M | 889 M                                             | 1.6 B | 1.7 B                                       | 1.7 B                                 | 4.7 B   | 5.8 B | 5.8 B |
| Projects                                                                                                                                                                                                                                                                                                                                        | 3     | 3     | 15            | 45   | 55    | 66                                                | 69    | 57                                          | 60                                    | 61      | 59    | 56    |
|                                                                                                                                                                                                                                                                                                                                                 | 0004  | 0005  | 0000          | 0007 | 0000  | 0000                                              | 0040  | 0011                                        | 0040                                  | 0040    | 0044  | 0045  |
|                                                                                                                                                                                                                                                                                                                                                 | 2004  | 2005  | 2006          | 2007 | 2008  | 2009                                              | 2010  | 2011                                        | 2012                                  | 2013    | 2014  | 2015  |
| Researchers solved the 2D Hubbard model and presented<br>evidence that it predicts HTSC behavior<br><i>Phys. Rev. Lett (</i> 2005)<br>Modeling of molecular basis of Parkinson's disease named #1<br>computational accomplishment<br><i>Breakthroughs</i> (2008)<br>Largest simulation of a galaxy's worth of dark matter, showed for the first |       |       |               |      |       |                                                   |       | inac<br>char<br><b>Nati</b><br>proposes nev |                                       | tassium |       |       |
| time the fractal-like appearance of dark matter substructures. <b>Natur</b><br>(2008), <b>Science</b> (2009)                                                                                                                                                                                                                                    |       |       |               |      |       |                                                   |       | nce materials<br>ete simulation             |                                       |         |       |       |
| World's first continuous simulation of 21,000 years<br>climate history. <b>Scie</b> t                                                                                                                                                                                                                                                           |       |       |               |      |       |                                                   |       | lation of the r<br>I nuclei in nat<br>)     |                                       |         |       |       |
| Largest-ever LES of a full-sized commercial combustion ch<br>in an existing helic<br><b>Compte Rendus de Meca</b> r                                                                                                                                                                                                                             |       |       | opter turbine |      |       | New method<br>structure, wi<br><b>Science</b> (20 |       | perimental da                               |                                       |         |       |       |
| US. DEPARTMENT OF ENERGY<br>US. DEPARTMENT OF ENERGY<br>UNDER COMPUTING<br>UNDER COMPUTING<br>UNDER COMPUTING                                                                                                                                                                                                                                   |       |       |               |      |       |                                                   |       |                                             | ks the petaso<br>0 cores, <b>Proc</b> |         |       |       |

# High-resolution reactor simulations predict startup conditions

#### **Science Objectives and Impact**


Use Titan to predict the neutron fission power profile of the Westinghouse AP1000 reactor before startup using three approaches to solve the Boltzmann transport equation:

- Shift (Monte Carlo sampling)
- Denovo (discrete angular discretization)
- Insilico (improved diffusion approximation)

#### **Application Performance**

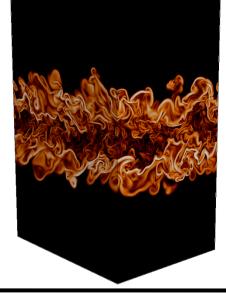
- Monte Carlo: 1 trillion particles (among the largest Monte Carlo calculations ever) > 230,000 Titan cores
- Denovo: Extremely fine-mesh calculations, GPUaccelerated speedup of 2x on overall application (4-6x on key computational kernel)
- Accelerated code is integrated into code base
- All 3 methods share identical input, which is a dramatic reduction in setup over traditional Monte Carlo codes
- GPU acceleration of Shift under way

John Turner Oak Ridge National Laboratory 40M Hours, ES Project 50M Hours, INCITE 2013 Project



DENOVO is a component of the DOE CASL Hub, necessary to achieve CASL challenge problems. Image Credit: John Turner

#### **Science Results**


- Provide insight into core behavior of AP1000 before startup
- Strengthen confidence in predictions available using current industry tools
- Simulations predict reactor criticality, rod worth, and reactivity coefficients
- Three hours for each Shift simulation on Titan vs. one year for legacy Monte Carlo code
- Pioneering application successfully performed paves the way for what one day may become the standard approach to reactor simulations

#### **The Complexities of Combustion**

#### Jackie Chen Sandia National Laboratories 79M Hours, OLCF Early Science Project 106M Hours, INCITE 2014 Project

#### **Science Objectives and Impact**

- Strategy: Use Titan to develop predictive models of turbulence in internal combustion engines and gas turbines.
- Objective: Employ S3D code to simulate a jet flame burning dimethyl ether and understand how a flame reignites.
- Impact: DNS and experimental data used to assess and develop predictive models for optimizing design of fuel efficient, clean vehicles and gas turbines using alternative fuels.



The logarithm of the scalar dissipation rate (that is, the local mixing rate) where white denotes high mixing rates and red lower mixing rates.

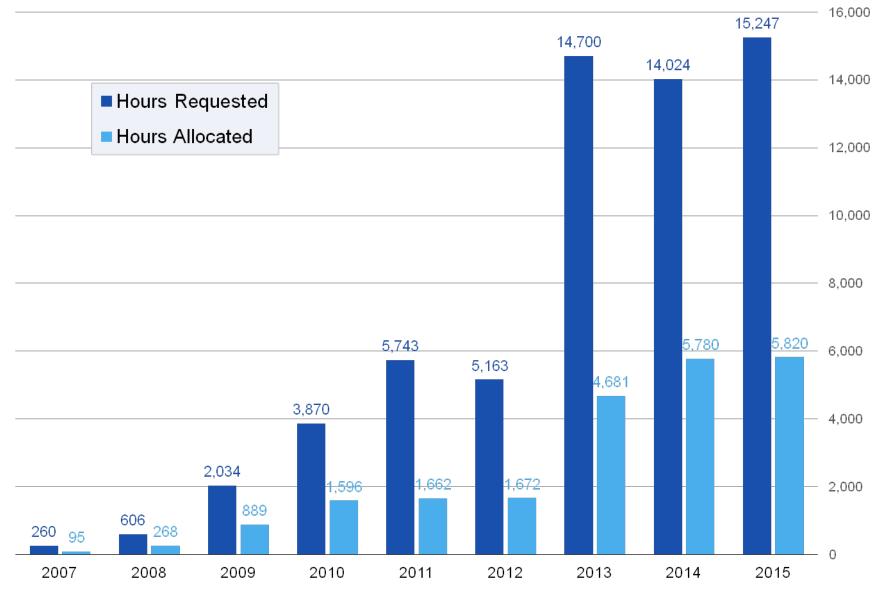
#### **Performance Results**

- ORNL's R. Sankaran and Cray's J. Levesque worked closely with team to optimize S3D on Titan.
- S3D was one of OLCF CAAR Early Science projects and the only one to use OpenACC.
- S3D runs 6x faster on Titan than on Jaguar due almost entirely to incorporation of OpenACC.
- From ExaCT codesign another 2X faster using Legion programming model and deferred execution runtime.

#### **Science Results**

- Simulated dimethyl ether for the first time representative oxygenated biofuel with 32 species.
- S3D speedup on Titan enabled the team's largest ever Reynolds number at 13,050.
- Simultaneous imaging of formaldehyde and hydroxyl was evaluated to determine effectiveness at measuring peak heat release rate.
- Sim data verified method performed very well at predicting maximum release rate.
- Mechanism of re-ignition due to coupling of turbulence and finite-rate DME chemistry revealed.

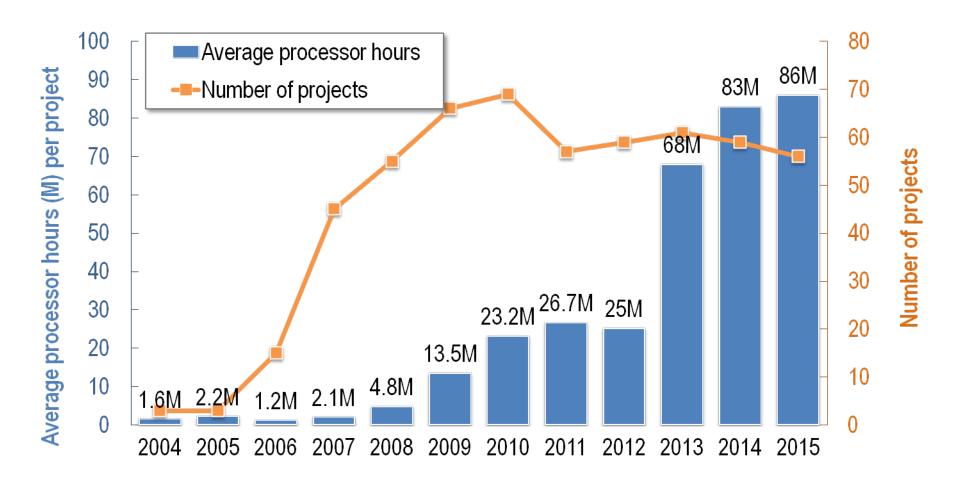
#### A. Bhagatwala, Proc. Combust. Inst. (2014)


| Direct Numerical Simulations of High Reynolds Number<br>Turbulent Channel Flow                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                   |                                                                             |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                             | ersity of Texas, Austin                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   | ESP and<br>INCITE 2013                                                      |  |  |  |
| Impact and Approach                                                                                                                                                                                                                                                                                                                                                                                                         | Accomplishments                                                                                                                                                                                                                                                                                                                                                             | ALCF Contributions                                                                                                                                                                                                                | 175 M hours                                                                 |  |  |  |
| <ul> <li>About 28% of U.S. energy resources are expended on transportation, in which the turbulence caused by the motion of fluid past walls governs much of the energy loss.</li> <li>Using a hybrid-spectral DNS code, this simulation on 524,288 cores of Mira aimed at a more complete understanding of wall-bounded turbulence.</li> <li>DNS at Ret = 5200 is the highest Reynolds number ever simulated to</li> </ul> | <ul> <li>Highly resolved turbulent field<br/>reveals that large scale motions<br/>contribute significantly to the<br/>turbulent intensity and Reynolds<br/>shear stress.</li> <li>Results are being used as a<br/>standard for development and<br/>validation of turbulence models<br/>(140 TB). Results are available<br/>at: <u>turbulence.ices.utexas.edu</u></li> </ul> | <ul> <li>Collaboration with Ran<br/>Balakrishnan and Jeff<br/>to improved managem<br/>execution threads resu<br/>performance increase.</li> <li>Minimizing inter-memo<br/>between OpenMP three<br/>near-perfect OpenMP</li> </ul> | Hammond led<br>ent of cache &<br>ulting in 2x<br>ory access<br>eads, led to |  |  |  |
| explore the physics in the overlap<br>region between near-wall and out-<br>layer turbulence; key to                                                                                                                                                                                                                                                                                                                         | Depiction of the instantaneous section of th                                                                                                                                                                                                                                                                                                                                | streamwise velocity compo<br>e simulated channel.                                                                                                                                                                                 | onent over a                                                                |  |  |  |
| <ul> <li>Myoungkyu Lee and Nicholas Malaya and Robert D. Moser, <i>"Petascale Direct Numerical Simulation of Turbulent Channel Flow on up to 786K Cores"</i> Proc. SC13</li> </ul>                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                   | 13                                                                          |  |  |  |

#### Hydrogen-on-Demand Using Lithium Aluminum Particles Priya Vashishta, University of Southern California

200M hours

| Impact and Approach                                                                                                                                                                                                                                                                                                                                                                                                                                    | Accomplishments                                                                                                                                                                                                                                                                                                                                                                                                                         | ALCF Contributions                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>On-demand hydrogen production<br/>for hydrogen-powered vehicles.</li> <li>Investigated chemical reaction<br/>for best generation of hydrogen</li> <li>Understand atomistic<br/>mechanisms from experiment: X.<br/>Chen et al., <i>Int. J. Energy Res.</i><br/>2013; <b>37</b>:1624-1634</li> <li>K. Shimamura, F. Shimojo, R. K.<br/>Kalia, A. Nakano, K. Nomura,<br/>and P. Vashishta, Nano Lett.,<br/>2014, 14(7), pp. 4090-4096</li> </ul> | <ul> <li>Demonstrated orders-of-<br/>magnitude acceleration of the<br/>reaction rate and higher yield by<br/>alloying Al nanoparticles with Li.<br/>Reaction rates and yield are high<br/>enough for industrial use.</li> <li>Revealed key nanostructural<br/>features for on-demand<br/>production of hydrogen gas from<br/>water using LiAl alloy<br/>nanoparticles. Production rate<br/>independent of nanoparticle size.</li> </ul> | <ul> <li>Based on work started at Mira<br/>Performance Boot Camp, FLOP rate<br/>was doubled by their team with the<br/>help of Nichols Romero (ALCF) and<br/>Robert Walkup (IBM).</li> <li>Production runs used 50% - 100% of<br/>Mira (97% of use on &gt; 1/3 of Mira)</li> </ul> |
| <ul> <li>Quantum molecular dynamics<br/>(QMD) simulations on Blue<br/>Gene/Q used roughly half of<br/>Mira resource for several days.</li> <li>Dr. James Davenport, Program<br/>Manager of Theoretical Condensed<br/>Matter Physics, Division of Materials<br/>Science and Engineering, BES (Grant<br/>Number DE-FG02-04ER46130)</li> </ul>                                                                                                            | (Right) LiAI particle in water.<br>White, red and cyan spheres are H,<br>O and Li atoms, respectively,<br>whereas the valence charge density<br>colored in magenta is centered at AI<br>atoms . 16,611 atoms are present in<br>the simulation cell.                                                                                                                                                                                     | <ul> <li>Computing resources for this DOE supported research were provided by the INCITE program.</li> </ul>                                                                                                                                                                       |


#### **Demand versus available INCITE hours**

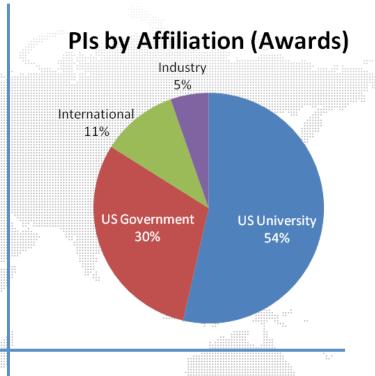




Core Hours (in millions)

## Size of INCITE awards






## **2015 INCITE award statistics**

- Request for Information helped attract new projects
- Call closed June 27th, 2014
- Total requests <u>~15 billion core-hours</u>, an increase of 1 billion core-hours over last year's requests
- Awards of 5.8 billion core-hours for CY 2015
- 56 projects awarded of which 30 are renewals



27% of nonrenewal submittals and 91% of renewals



Contact information Julia C. White, INCITE Manager whitejc@DOEleadershipcomputing.org



#### New proposals,\* new PI's \*excluding renewal submittals

- **48%** of the PI's had never before led an INCITE proposal
  - 96 new proposals, 46 led by new Pl's
- 23% of non-renewal projects awarded time led by new Pl's
   26 new projects awarded, 6 led by new Pl's

INCITE actively engages with new research teams through outreach such as workshops, email distributions, and individual networking.



## **2015 award statistics, by system**

|                                   | Titan | Mira  |
|-----------------------------------|-------|-------|
| Number of projects*               | 30    | 37    |
| Average Project                   | 75M   | 96.5M |
| Median Project                    | 60M   | 89M   |
| Total Awards (core-hrs in CY2015) | 2.25B | 3.57B |

\* Total of 56 INCITE projects (many of the projects received time on both Mira and Titan)



| Project Title                                                                              | PI                                           | Titan      | Mira        |
|--------------------------------------------------------------------------------------------|----------------------------------------------|------------|-------------|
| Ab initio simulations of carrier transports in organic and inorganic nanosystems (Renewal) | Wang, Lin-Wang (LBNL )                       | 25,000,000 |             |
| Accelerated Climate Modeling for Energy                                                    | Taylor, Mark (SNL)                           | 50,000,000 | 140,000,000 |
| Accelerator Modeling for Discovery                                                         | Amundson, James (Fermilab)                   |            | 60,000,000  |
| Adaptive Detached Eddy Simulation of a High Lift<br>Wing with Active Flow Control          | Jansen, Kenneth (University of<br>Colorado)  |            | 70,000,000  |
| Advancing Models for Multiphase Flow and Transport in Porous Medium System (Renewal)       | McClure, James (Virginia Tech)               | 60,000,000 |             |
| Approaching Exascale Models of Astrophysical Explosions                                    | Zingale, Michael (Stony Brook<br>University) | 50,000,000 |             |



| Project Title                                                                        | PI                                               | Titan       | Mira        |
|--------------------------------------------------------------------------------------|--------------------------------------------------|-------------|-------------|
| Catalyst Support Interactions                                                        | Abild-Pedersen, Frank (Stanford University/SLAC) |             | 50,000,000  |
| CESM Century-Scale Climate Experiments with a High-Resolution Atmosphere (Renewal)   | Washington, Warren (UCAR)                        |             | 200,000,000 |
| Characterizing Large-Scale Structural Transitions in<br>Membrane Transporters        | Tajkhorshid, Emad (University of<br>Illinois)    | 96,000,000  |             |
| Computational Actinide Chemistry: Reliable<br>Predictions and New Concepts (Renewal) | Dixon, David (University of<br>Alabama)          | 150,000,000 |             |
| Computational spectroscopy of heterogeneous interfaces                               | Galli, Giulia (University of Chicago)            |             | 180,000,000 |
| Cosmic Reionization On Computers                                                     | Gnedin, Nickolay (Fermilab)                      |             | 74,000,000  |



| Project Title                                                                           | PI                                                | Titan       | Mira        |
|-----------------------------------------------------------------------------------------|---------------------------------------------------|-------------|-------------|
| Cosmological Simulations for Large-Scale Sky<br>Surveys (Renewal)                       | Habib, Salman (ANL)                               | 80,000,000  | 80,000,000  |
| Designing O2 tolerant hydrogenases (Renewal)                                            | Pande, Vijay (Stanford University)                | 13,000,000  |             |
| Direct Numerical Simulations and Robust Predictions of Cloud Cavitation Collapse        | Koumoutsakos, Petros (ETH<br>Zürich, Switzerland) |             | 88,000,000  |
| DNS of Turbulent Combustion Towards Fuel-Flexible Gas Turbines and IC Engines (Renewal) | Chen, Jacqueline (SNL)                            | 106,000,000 |             |
| DNS/LES of Complex Turbulent Flows                                                      | Mahesh, Krishnan (University of<br>Minnesota)     |             | 100,000,000 |
| Dynamic and Adaptive Parallel Programming for Exascale Research                         | Harrison, Robert (BNL/Stony Brook<br>University)  |             | 15,000,000  |



| Project Title                                                                   | PI                                                           | Titan       | Mira        |
|---------------------------------------------------------------------------------|--------------------------------------------------------------|-------------|-------------|
| First-principles simulations of high-speed combustion and detonation (Renewal)  | Khokhlov, Alexei (University of Chicago)                     |             | 150,000,000 |
| Frontiers in planetary and stellar magnetism through high-performance computing | Aurnou, Jonathan (UCLA)                                      |             | 83,000,000  |
| Global Adjoint Tomography                                                       | Tromp, Jeroen (Princeton<br>University)                      | 50,000,000  |             |
| High Frequency Ground Motion Simulation for Seismic Hazard Analysis             | Jordan, Thomas (USC)                                         | 119,000,000 | 48,000,000  |
| High-fidelity simulation of tokamak edge plasma transport (Renewal)             | Chang, Choong-Seock (Princeton<br>Plasma Physics Laboratory) | 170,000,000 | 100,000,000 |
| High-Fidelity Simulations of Gas Turbine Stages with GPU Acceleration           | Michelassi, Vittorio (General<br>Electric)                   | 40,000,000  |             |



| Project Title                                                                    | PI                                              | Titan       | Mira        |
|----------------------------------------------------------------------------------|-------------------------------------------------|-------------|-------------|
| Innovative Simulations of High-Temperature<br>Superconductors (Renewal)          | Maier, Thomas (ORNL)                            | 60,000,000  |             |
| Large Eddy Simulations of combustor liner flows (Renewal)                        | Dord, Anne (General Electric)                   |             | 89,000,000  |
| Large-Eddy Simulation of the Bachalo-Johnson flow, with shock-induced separation | Spalart, Philippe (Boeing)                      |             | 135,000,000 |
| Large-scale coupled-cluster calculations of supramolecular wires (Renewal)       | Jørgensen, Poul (Aarhus University,<br>Denmark) | 48,000,000  |             |
| Lattice QCD (Renewal)                                                            | Mackenzie, Paul (Fermilab)                      | 100,000,000 | 180,000,000 |
| Linkages between Turbulence and Reconnection in Kinetic Plasmas (Renewal)        | Daughton, William (LANL)                        | 60,000,000  |             |



| Project Title                                                                        | PI                                             | Titan       | Mira        |
|--------------------------------------------------------------------------------------|------------------------------------------------|-------------|-------------|
| Multiscale Simulations of Human Pathologies (Renewal)                                | Karniadakis, George (Brown<br>University)      | 25,000,000  | 45,000,000  |
| Non-covalent bonding in complex molecular systems with quantum Monte Carlo (Renewal) | Alfe, Dario (University College<br>London, UK) | 80,000,000  | 68,000,000  |
| Nuclear Structure and Nuclear Reactions (Renewal)                                    | Vary, James (Iowa State University)            | 104,000,000 | 100,000,000 |
| Nucleation and growth of colloidal crystals using highly scalable Monte Carlo        | Glotzer, Sharon (University of<br>Michigan)    | 55,000,000  |             |
| Parameter studies of Boussinesq flows (Renewal)                                      | Kurien, Susan (LANL)                           |             | 44,000,000  |
| Particle acceleration in shocks: from astrophysics to laboratory in silico (Renewal) | Fiuza, Frederico (LLNL)                        |             | 110,000,000 |



| Project Title                                                               | PI                                     | Titan      | Mira        |
|-----------------------------------------------------------------------------|----------------------------------------|------------|-------------|
| Performance Evaluation and Analysis Consortium (PEAC) End Station (Renewal) | Oliker, Leonid (LBNL)                  | 45,000,000 | 45,000,000  |
| Petascale Simulation of Magnetorotational Core-<br>Collapse Supernovae      | Couch, Sean (University of<br>Chicago) |            | 50,000,000  |
| Petascale Simulations of Laser Plasma Interaction<br>Relevant to IFE        | Tsung, Frank (UCLA)                    |            | 90,000,000  |
| Petascale Simulations of Self-Healing Nanomaterials (Renewal)               | Kalia, Rajiv (USC)                     |            | 180,000,000 |
| Predictive and insightful calculations of energy materials (Renewal)        | Kent, Paul (ORNL)                      | 50,000,000 |             |
| Predictive Materials Modeling for Li-Air Battery Systems (Renewal)          | Curtiss, Larry (ANL)                   |            | 50,000,000  |

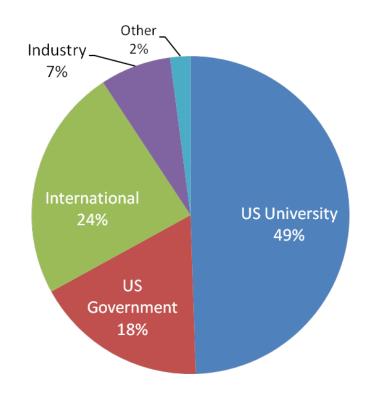


| Project Title                                                                        | PI                                           | Titan       | Mira        |
|--------------------------------------------------------------------------------------|----------------------------------------------|-------------|-------------|
| QMC Simulations DataBase for predictive modeling and theory (Renewal)                | Ceperley, David (University of Illinois)     | 85,000,000  | 100,000,000 |
| Quantum Monte Carlo Simulations of Hydrogen and Water Ice (Renewal)                  | Needs, Richard (University of Cambridge, UK) | 80,000,000  |             |
| Quark flavors and conserved charges at finite density in the QCD phase diagram       | Bellwied, Rene (University of Houston)       |             | 150,000,000 |
| Reactive MD simulations of electrochemical oxide interfaces at mesoscale (Renewal)   | Sankaranarayanan, Subramanian (ANL)          |             | 40,000,000  |
| Scalable first principles calculations for materials at finite temperature (Renewal) | Eisenbach, Markus (ORNL)                     | 150,000,000 |             |



| Project Title                                                                          | PI                                            | Titan       | Mira        |
|----------------------------------------------------------------------------------------|-----------------------------------------------|-------------|-------------|
| Scalable System Software for Parallel Programming (Renewal)                            | Latham, Robert (ANL)                          |             | 25,000,000  |
| Shutdown and recovery of the barrier function of human skin                            | Klein, Michael (Temple University)            | 92,000,000  |             |
| Simulation of correlated electrons for superconducting materials                       | Wagner, Lucas (University of<br>Illinois)     |             | 106,000,000 |
| Simulation of fundamental energy conversion processes in the cell                      | Schulten, Klaus (University of Illinois)      | 150,000,000 |             |
| SiO2 Fracture: Chemomechanics with a Machine<br>Learning Hybrid QM/MM Scheme (Renewal) | Kermode, James (King's College<br>London, UK) |             | 125,000,000 |
| State-of-the Art Simulations of Liquid Phenomena                                       | Gordon, Mark (Iowa State University)          |             | 200,000,000 |




| Project Title                                                              | PI                                                                       | Titan      | Mira        |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------|------------|-------------|
| Studies of large conformational changes in biomolecular machines (Renewal) | Roux, Benoit (University of Chicago)                                     |            | 120,000,000 |
| Targeting Cancer with High Power Lasers                                    | Bussmann, Michael (Helmholtz-<br>Zentrum Dresden-Rossendorf,<br>Germany) | 57,000,000 |             |
| Towards Breakthroughs in Protein Structure<br>Calculation and Design       | Baker, David (University of<br>Washington)                               |            | 80,000,000  |



#### **2015 INCITE Panels**

97 science experts participated in the 2015 INCITE panel review.

- 60+% of the reviewers include: Society Fellows (AAAS, APS, IEEE, etc), NSF or DOE Early CAREER, Laboratory Fellows, National Academy members, Department Chairs
- 48% participated in the 2014 INCITE review



#### **Reviewer Affiliation**



## **2015 INCITE Panel questionnaire**

\*Scores range from 1 to 5 where 1 is "strongly disagree" and 5 is "strongly agree."

| Questionnaire*                                                                                                                                     | 2015 |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------|
| The INCITE proposals discussed in the panel represent some of the most cutting-edge computational work in the field.                               | 4.5  |
| The proposals were comprehensive and of appropriate length given the award amount requested.                                                       | 4.2  |
| The science panel was sufficiently diverse to assess the range of research topics being considered.                                                | 4.5  |
| Please rate your overall satisfaction with the 2015 INCITE Science Panel review process. (ranging from 1-"very dissatisfied" to 5-"very satisfied) | 4.8  |



#### Contacts

#### For details about the INCITE program:

http://www.doeleadershipcomputing.org



## Fact sheets for 2015 awards are online

http://www.doeleadershipcomputing.org/awards/2015INCITEFactSheets.pdf



# Thank you

