
http://tiny.cc/hpcg

TOWARD A NEW (ANOTHER)
METRIC FOR RANKING HIGH
PERFORMANCE
COMPUTING SYSTEMS
Jack Dongarra & Piotr Luszczek
University of Tennessee/ORNL

Michael Heroux
Sandia National Labs

1

http://tiny.cc/hpcg
2 Confessions of an

Accidental Benchmarker
• Appendix B of the LINPACK Users’ Guide

• Designed to help users extrapolate execution time for
LINPACK software package

• First benchmark report from 1977;
• Cray 1 to DEC PDP-10

http://tiny.cc/hpcg

Started 36 Years Ago
 • In the late 70’s the

fastest computer ran
LINPACK at 14 Mflop/s

• In the late 70’s floating
point operations were
expensive compared to
other operations and
data movement

• Matrix size, n = 100
• That’s what would fit in

memory

3

• LINPACK code is based on “right-looking”
algorithm:
• O(n3) Flop/s and O(n3) data movement

http://tiny.cc/hpcg

Benchmarks Evolve:
From LINPACK to HPL to TOP500
• LINPACK Benchmark report, ANL TM-23, 1984

• Performance of Various Computers Using Standard
Linear Equations Software, listed about 70 systems.

• Over time the LINPACK Benchmark when through a number of
changes.
• Began with Fortran code, run the code as is, no changes, N = 100 (Table 1)
• Later N = 1000 introduced, hand coding to allow for optimization and

parallelism (Table 2)
• Timing harness provided to generate matrix, check the solution
• The basic algorithm, GE/PP, remained the same.

• 1989 started putting together Table 3 (Toward Peak Performance) of
the LINPACK benchmark report.
• N allowed to be any size
• Timing harness provided to generate matrix, check the solution
• List Rmax, Nmax, Rpeak

• In 2000 we put together an optimized implementation of the
benchmark, called High Performance LINPACK or HPL.
• Just needs optimized version of BLAS and MPI.

4

http://tiny.cc/hpcg

TOP500
• In 1986 Hans Meuer started a list of

supercomputer around the world, they were
ranked by peak performance.

• Hans approached me in 1992 to merge our
lists into the “TOP500”.

• The first TOP500 list was in June 1993.

5

http://tiny.cc/hpcg

Rules For HPL and TOP500
• Have to compute the solution to a prescribed accuracy.
• Excludes the use of a fast matrix multiply algorithm like

"Strassen's Method”
• Algorithms which compute a solution in a precision lower than

full precision (64 bit floating point arithmetic) and refine the
solution using an iterative approach.

• The authors of the TOP500 reserve the right to independently
verify submitted LINPACK results, and exclude computer from
the list which are not valid or not general purpose in nature.

• By general purpose computer we mean that the computer
system must be able to be used to solve a range of scientific
problems.

• Any computer designed specifically to solve the LINPACK
benchmark problem or have as its major purpose the goal of a
high TOP500 ranking will be disqualified.

6

http://tiny.cc/hpcg

High Performance LINPACK (HPL)
• Is a widely recognized and discussed metric for ranking

high performance computing systems
• When HPL gained prominence as a performance metric in

the early 1990s there was a strong correlation between
its predictions of system rankings and the ranking
that full-scale applications would realize.

• Computer vendors pursued designs that would
increase their HPL performance, which would in turn
improve overall application performance.

• Today HPL remains valuable as a measure of historical
trends, and as a stress test, especially for leadership
class systems that are pushing the boundaries of current
technology.

7

http://tiny.cc/hpcg

HPL has a Number of Problems
• HPL performance of computer systems are no longer so

strongly correlated to real application performance,
especially for the broad set of HPC applications governed
by partial differential equations.

• Designing a system for good HPL performance can

actually lead to design choices that are wrong for the
real application mix, or add unnecessary components or
complexity to the system.

8

http://tiny.cc/hpcg

Concerns
• The gap between HPL predictions and real application

performance will increase in the future.

• A computer system with the potential to run HPL at an

Exaflop is a design that may be very unattractive for
real applications.

• Future architectures targeted toward good HPL

performance will not be a good match for most
applications.

• This leads us to a think about a different metric

9

http://tiny.cc/hpcg

HPL - Good Things
• Easy to run
• Easy to understand
• Easy to check results
• Stresses certain parts of the system
• Historical database of performance information
• Good community outreach tool
• “Understandable” to the outside world

• “If your computer doesn’t perform well on the LINPACK

Benchmark, you will probably be disappointed with the
performance of your application on the computer.”

10

http://tiny.cc/hpcg

HPL - Bad Things
• LINPACK Benchmark is 36 years old

• TOP500 (HPL) is 20.5 years old

• Floating point-intensive performs O(n3) floating point
operations and moves O(n2) data.

• No longer so strongly correlated to real apps.
• Reports Peak Flops (although hybrid systems see only 1/2 to 2/3 of Peak)

• Encourages poor choices in architectural features
• Overall usability of a system is not measured
• Used as a marketing tool
• Decisions on acquisition made on one number
• Benchmarking for days wastes a valuable resource

11

http://tiny.cc/hpcg

Running HPL
• In the beginning to run HPL on the number 1 system

was under an hour.
• On Livermore’s Sequoia IBM BG/Q the HPL run took

about a day to run.
• They ran a size of n=12.7 x 106 (1.28 PB)

• 16.3 PFlop/s requires about 23 hours to run!!

• The longest run was 60.5 hours

• JAXA machine
• Fujitsu FX1, Quadcore SPARC64 VII 2.52 GHz

• A matrix of size n = 3.3 x 106

• .11 Pflop/s #160 today

12

http://tiny.cc/hpcg #1 System on the TOP500 Over the Past 20 Years
(16 machines in that club)
TOP500 List Computer

r_max
(Tflop/s) n_max Hours MW

6/93 (1) TMC CM-5/1024 .060 52224 0.4
11/93 (1) Fujitsu Numerical Wind Tunnel .124 31920 0.1 1.
6/94 (1) Intel XP/S140 .143 55700 0.2

11/94 - 11/95 (3) Fujitsu Numerical Wind Tunnel .170 42000 0.1 1.
6/96 (1) Hitachi SR2201/1024 .220 138,240 2.2
11/96 (1) Hitachi CP-PACS/2048 .368 103,680 0.6

6/97 - 6/00 (7) Intel ASCI Red 2.38 362,880 3.7 .85
11/00 - 11/01 (3) IBM ASCI White, SP Power3 375 MHz 7.23 518,096 3.6
6/02 - 6/04 (5) NEC Earth-Simulator 35.9 1,000,000 5.2 6.4
11/04 - 11/07 (7) IBM BlueGene/L 478. 1,000,000 0.4 1.4
6/08 - 6/09 (3) IBM Roadrunner – PowerXCell 8i 3.2 Ghz 1,105. 2,329,599 2.1 2.3

11/09 - 6/10 (2) Cray Jaguar - XT5-HE 2.6 GHz 1,759. 5,474,272 17.3 6.9
11/10 (1) NUDT Tianhe-1A, X5670 2.93Ghz NVIDIA 2,566. 3,600,000 3.4 4.0

6/11 - 11/11 (2) Fujitsu K computer, SPARC64 VIIIfx 10,510. 11,870,208 29.5 9.9
6/12 (1) IBM Sequoia BlueGene/Q 16,324. 12,681,215 23.1 7.9
11/12 (1) Cray XK7 Titan AMD + NVIDIA Kepler 17,590. 4,423,680 0.9 8.2

6/13 – 11/13 (2) NUDT Tianhe-2 Intel IvyBridge & Xeon Phi 33,862. 9,960,000 5.4 17.8

9 6 2

13

http://tiny.cc/hpcg

Ugly Things about HPL
• Doesn’t probe the architecture; only one data point
• Constrains the technology and architecture options for

HPC system designers.
• Skews system design.

• Floating point benchmarks are not quite as valuable to
some as data-intensive system measurements

14

http://tiny.cc/hpcg

Many Other Benchmarks
• TOP500
• Green 500
• Graph 500 160
• Sustained Petascale
Performance

• HPC Challenge
• Perfect
• ParkBench
• SPEC-hpc
• Big Data Top100

• Livermore Loops
• EuroBen
• NAS Parallel Benchmarks
• Genesis
• RAPS
• SHOC
• LAMMPS
• Dhrystone
• Whetstone
• I/O Benchmarks

15

http://tiny.cc/hpcg

Goals for New Benchmark
• Augment the TOP500 listing with a benchmark that correlates with important

scientific and technical apps not well represented by HPL

• Encourage vendors to focus on architecture features needed for high

performance on those important scientific and technical apps.
• Stress a balance of floating point and communication bandwidth and latency
• Reward investment in high performance collective ops
• Reward investment in high performance point-to-point messages of various sizes
• Reward investment in local memory system performance
• Reward investment in parallel runtimes that facilitate intra-node parallelism

• Provide an outreach/communication tool
• Easy to understand
• Easy to optimize
• Easy to implement, run, and check results

• Provide a historical database of performance information
• The new benchmark should have longevity

16

http://tiny.cc/hpcg

Proposal: HPCG
• High Performance Conjugate Gradient (HPCG).
• Solves Ax=b, A large, sparse, b known, x computed.
• An optimized implementation of PCG contains essential

computational and communication patterns that are
prevalent in a variety of methods for discretization and
numerical solution of PDEs

• Patterns:

• Dense and sparse computations.
• Dense and sparse collective.
• Data-driven parallelism (unstructured sparse triangular solves).

• Strong verification and validation properties

17

http://tiny.cc/hpcg

Model Problem Description
• Synthetic discretized 3D PDE (FEM, FVM, FDM).
• Single DOF heat diffusion model.
• Zero Dirichlet BCs, Synthetic RHS s.t. solution = 1.
• Local domain:
• Process layout:
• Global domain:
• Sparse matrix:

• 27 nonzeros/row interior.
• 7 – 18 on boundary.
• Symmetric positive definite.

http://tiny.cc/hpcg

HPCG Design Philosophy
• Relevance to broad collection of important apps.
• Simple, single number.
• Few user-tunable parameters and algorithms:

• The system, not benchmarker skill, should be primary factor in result.
• Algorithmic tricks don’t give us relevant information.

• Algorithm (PCG) is vehicle for organizing:
• Known set of kernels.
• Core compute and data patterns.
• Tunable over time (as was HPL).

• Easy-to-modify:
• _ref kernels called by benchmark kernels.
• User can easily replace with custom versions.
• Clear policy: Only kernels with _ref versions can be modified.

19

http://tiny.cc/hpcg

PCG ALGORITHM
p0 := x0, r0 := b-Ap0
Loop i = 1, 2, …

o zi := M-1ri-1
o if i = 1
 pi := zi
 αi := dot_product(ri-1, z)

o else
 αi := dot_product(ri-1, z)
 βi := αi/αi-1
 pi := βi*pi-1+zi

o end if
o αi := dot_product(ri-1, zi) /dot_product(pi, A*pi)
o xi+1 := xi + αi*pi
o ri := ri-1 – αi*A*pi
o if ||ri||2 < tolerance then Stop

 end Loop

20

http://tiny.cc/hpcg

Problem Setup

•Construct Geometry.
•Generate Problem.
•Setup Halo Exchange.
• Initialize Sparse Meta-data.
•Call user-defined
OptimizeProblem function.
This function permits the
user to change data
structures and perform
permutation that can
improve execution.

Validation Testing

•Perform spectral
properties PCG Tests:
•Convergence for 10
distinct eigenvalues:
• No preconditioning.
•With Preconditioning

•Symmetry tests:
•Sparse MV kernel.
•MG kernel.

Reference Sparse MV
and Gauss-Seidel
kernel timing.

•Time calls to the
reference versions
of sparse MV and
MG for inclusion in
output report.

Reference CG timing
and residual
reduction.

•Time the execution
of 50 iterations of
the reference PCG
implementation.

•Record reduction of
residual using the
reference
implementation.
The optimized code
must attain the
same residual
reduction, even if
more iterations are
required.

Optimized CG Setup.

•Run one set of Optimized PCG
solver to determine number of
iterations required to reach residual
reduction of reference PCG.

•Record iteration count as
numberOfOptCgIters.

•Detect failure to converge.
•Compute how many sets of
Optimized PCG Solver are required
to fill benchmark timespan. Record
as numberOfCgSets

Optimized CG timing and
analysis.

•Run numberOfCgSets
calls to optimized PCG
solver with
numberOfOptCgIters
iterations.

•For each set, record
residual norm.

•Record total time.
•Compute mean and
variance of residual
values.

Report results

•Write a log file for
diagnostics and
debugging.

•Write a benchmark
results file for reporting
official information.

21

http://tiny.cc/hpcg

Preconditioner
• Hybrid geometric/algebraic multigrid:

• Grid operators generated synthetically:
• Coarsen by 2 in each x, y, z dimension (total of 8

reduction each level).
• Use same GenerateProblem() function for all levels.

• Grid transfer operators:
• Simple injection. Crude but…
• Requires no new functions, no repeat use of other

functions.
• Cheap.

• Smoother:
• Symmetric Gauss-Seidel [ComputeSymGS()].
• Except, perform halo exchange prior to sweeps.
• Number of pre/post sweeps is tuning parameter.

• Bottom solve:
• Right now just a single call to ComputeSymGS().

22

22

• Symmetric Gauss-Seidel preconditioner
• In Matlab that might look like:

LA = tril(A); UA = triu(A); DA = diag(diag(A));

x = LA\y;
x1 = y - LA*x + DA*x; % Subtract off extra
 diagonal contribution
x = UA\x1;

(In 2D, something like this)

http://tiny.cc/hpcg

HPCG Parameters
• Iterations per set: 50.
• Total benchmark time for official result:

• Repeated until 3600 seconds (1 hour run).
• Anything less is reported as a “tuning” result.

• Coarsening: 2x – 2x – 2x (8x total).
• Number of levels:

• 4 (including finest level).
• Requires nx, ny, nz divisible by 8.

• Pre/post smoother sweeps: 1 each.

23

23

http://tiny.cc/hpcg

Merits of HPCG
• Includes major communication/computational patterns.

• Represents a minimal collection of the major patterns.

• Rewards investment in:
• High-performance collective ops.
• Local memory system performance.
• Low latency cooperative threading.

• Detects/measures variances from bitwise reproducibility.
• Executes kernels at several (tunable) granularities:

• nx = ny = nz = 104 gives
• nlocal = 1,124,864; 140,608; 17,576; 2,197
• ComputeSymGS with multicoloring adds one more level:

• 8 colors.
• Average size of color = 275.
• Size ratio (largest:smallest): 4096

• Provide a “natural” incentive to run a big problem.

24

24

http://tiny.cc/hpcg

Performance “Shock”
25

512 MPI Processes

Courtesy Kalyan
Kumaran, Argonne

Courtesy Mahesh
Rajan, Sandia

ANL’s IBM BG/Q

LANL’s Cray XT3

http://tiny.cc/hpcg 26

Slide courtesy Naoya Maruyama, RIKEN AICS, and Fujitsu

http://tiny.cc/hpcg 27

University of Texas Austin, NSF’s Stampede system

http://tiny.cc/hpcg

HPCG and HPL
• We are NOT proposing to

eliminate HPL as a metric.

• The historical importance and
community outreach value is
too important to abandon.

• HPCG will serve as an
alternate ranking of the
Top500.
• Similar perhaps to the Green500

listing.

28

28

HPCG

http://tiny.cc/hpcg

Signs of Interest and Uptake
• Input from a various people at DOE Labs

• Discussions with and results from every HPC vendor.

• Major, deep technical discussions with several.

• Same with most LCFs.

• Intel-sponsored SC’14 Workshop on Optimizing HPCG.

29

http://tiny.cc/hpcg

HPCG Tech Reports
Toward a New Metric for Ranking
High Performance Computing Systems

• Jack Dongarra and Michael Heroux
HPCG Technical Specification

• Michael Heroux, Jack Dongarra,
 Piotr Luszczek

• http://tiny.cc/hpcg

30

30

http://www.sandia.gov/~maherou/docs/HPCG-Benchmark.pdf
http://www.sandia.gov/~maherou/docs/HPCG-Benchmark.pdf
http://www.sandia.gov/~maherou/docs/HPCG-Benchmark.pdf
http://www.sandia.gov/~maherou/docs/HPCG-Benchmark.pdf
http://www.sandia.gov/~maherou/docs/HPCG-Benchmark.pdf
http://tiny.cc/hpcg

	Toward a New (Another) Metric for Ranking High Performance Computing Systems
	Confessions of an �Accidental Benchmarker
	Started 36 Years Ago�
	Benchmarks Evolve:�From LINPACK to HPL to TOP500
	TOP500
	Rules For HPL and TOP500	
	High Performance LINPACK (HPL)
	HPL has a Number of Problems
	Concerns
	HPL - Good Things
	HPL - Bad Things
	Running HPL
	#1 System on the TOP500 Over the Past 20 Years �(16 machines in that club)
	Ugly Things about HPL
	Many Other Benchmarks
	Goals for New Benchmark
	Proposal: HPCG
	Model Problem Description
	HPCG Design Philosophy
	Slide Number 20
	Slide Number 21
	Preconditioner
	HPCG Parameters
	Merits of HPCG
	Performance “Shock”
	Slide Number 26
	Slide Number 27
	HPCG and HPL
	Signs of Interest and Uptake
	HPCG Tech Reports

