TOWARD A NEW (ANOTHER) METRIC FOR RANKING HIGH PERFORMANCE COMPUTING SYSTEMS

Jack Dongarra & Piotr Luszczek University of Tennessee/ORNL

Michael Heroux Sandia National Labs

http://tiny.cc/hpcg

Confessions of an Accidental Benchmarker

- Appendix B of the LINPACK Users' Guide
 - Designed to help users extrapolate execution LINPACK software package
- First benchmark report from 1977;
 - Cray 1 to DEC PDP-10

Started 36 Years Ago

- In the late 70's the fastest computer ran LINPACK at 14 Mflop/s
- In the late 70's floating point operations were expensive compared to other operations and data movement
- Matrix size, n = 100
 - That's what would fit in memory

UNIT = 10**6 TIME/(1/3 100**3 + 100**2)							
n	Facility	TIME N=100 m	UNIT icro-	Computer	Туре	Compiler	
	NCAR 14.0 LASL 4,6 NCAR 3.5 LASL 5,2 Argonne 2.3 NCAR 19 Argonne 177 NASA Langley 19 U. III. Urbana 18 LLL 14 SLAC 1,4 Michigan 10 Toronto .7 Northwestern 47 Texas 55 China Lake 35	.049 .148 .192 .297 .359 .388 .489 .506 .579 .631 .579 .631 .579 .631 .193* 1.93*	0.14 0.43 0.56 0.86 1.05 1.33 1.42 1.47 1.69 1.84 2.59 4.20 5.63 5.69	CRAY+1 CDC 7600 CRAY+1 CDC 7600 IBM 370/195 CDC 7600 IBM 3033 CDC Cyber 175 CDC Cyber 175 CDC Cyber 175 CDC Cyber 175 CDC 7600 IBM 370/168 Amdah1 470/V6 IBM 370/165 CDC 6600 CDC 6600 Univac 1110	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	CFT, Assembly BLAS FTN, Assembly BLAS CFT FTN H Local H FTN Ext. 4.6 CHAT, No optimize H Ext., Fast mult. H I Ext., Fast mult. FTN RUN V	
	Yale Rell Labs Wisconsin Lowa State U. III. Chicago Purdue U. C. San Diego Yale	2.59 3.46 3.49 3.54 4.10 5.69 13.1 017.1	7.53 10.1 10.1 10.2 11.9 16.6 38.2 49.9	DEC KL-20 Honeywell 6080 Univac 1110 Itel AS/5 mod3 IBM 370/158 CDC 6500 Burroughs 6700 DEC KA-10	S S D D S S S	F20 Y V G1 FUN H F40	
	* TIME(100) = (100/75)*	*3 SGEI	FA(75) + (100/7	5)**2	SGESL(75)	

3

- LINPACK code is based on "right-looking" algorithm:
 - O(n³) Flop/s and O(n³) data movement

Benchmarks Evolve: From LINPACK to HPL to TOP500

- LINPACK Benchmark report, ANL TM-23, 1984
 - Performance of Various Computers Using Standard Linear Equations Software, listed about 70 systems.
- Over time the LINPACK Benchmark when through a number of changes.
 - Began with Fortran code, run the code as is, no changes, N = 100 (Table 1)
 - Later N = 1000 introduced, hand coding to allow for optimization and parallelism (Table 2)
 - Timing harness provided to generate matrix, check the solution
 - The basic algorithm, GE/PP, remained the same.
- 1989 started putting together Table 3 (Toward Peak Performance) of the LINPACK benchmark report.
 - N allowed to be any size
 - Timing harness provided to generate matrix, check the solution
 - List R_{max}, N_{max}, R_{peak}
- In 2000 we put together an optimized implementation of the benchmark, called High Performance LINPACK or HPL.
 - Just needs optimized version of BLAS and MPI.

TOP500

- In 1986 Hans Meuer started a list of supercomputer around the world, they were ranked by peak performance.
- Hans approached me in 1992 to merge our lists into the "TOP500".
- The first TOP500 list was in June 1993.

Rank	Site	System	Cores	Rmax (GFlop/s)	Rpeak (GFlop/s)	Power (kW)
0	Los Alamos National Laboratory United States	CM-5/1024 Thinking Machines Corporation	1,024	59.7	131.0	
2	Minnesota Supercomputer Center United States	CM-5/544 Thinking Machines Corporation	544	30.4	69.6	
3	National Security Agency United States	CM-5/512 Thinking Machines Corporation	512	30.4	65.5	
4	NCSA United States	CM-5/512 Thinking Machines Corporation	512	30.4	65.5	
6	NEC Japan	SX-3/44R NEC	4	23.2	25.6	
6	Atmospheric Environment Service (AES)	SX-3/44	4	20.0	22.0	

Rules For HPL and TOP500

- Have to compute the solution to a prescribed accuracy.
- Excludes the use of a fast matrix multiply algorithm like "Strassen's Method"
- Algorithms which compute a solution in a precision lower than full precision (64 bit floating point arithmetic) and refine the solution using an iterative approach.
- The authors of the TOP500 reserve the right to independently verify submitted LINPACK results, and exclude computer from the list which are not valid or not general purpose in nature.
- By general purpose computer we mean that the computer system must be able to be used to solve a range of scientific problems.
- Any computer designed specifically to solve the LINPACK benchmark problem or have as its major purpose the goal of a high TOP500 ranking will be disqualified.

High Performance LINPACK (HPL)

- Is a widely recognized and discussed metric for ranking high performance computing systems
- When HPL gained prominence as a performance metric in the early 1990s there was a strong correlation between its predictions of system rankings and the ranking that full-scale applications would realize.
- Computer vendors pursued designs that would increase their HPL performance, which would in turn improve overall application performance.
- Today HPL remains valuable as a measure of historical trends, and as a stress test, especially for leadership class systems that are pushing the boundaries of current technology.

HPL has a Number of Problems

- HPL performance of computer systems are no longer so strongly correlated to real application performance, especially for the broad set of HPC applications governed by partial differential equations.
- Designing a system for good HPL performance can actually lead to design choices that are wrong for the real application mix, or add unnecessary components or complexity to the system.

Concerns

- The gap between HPL predictions and real application performance will increase in the future.
- A computer system with the potential to run HPL at an Exaflop is a design that may be very unattractive for real applications.
- Future architectures targeted toward good HPL performance will not be a good match for most applications.
- This leads us to a think about a different metric

HPL - Good Things

- Easy to run
- Easy to understand
- Easy to check results
- Stresses certain parts of the system
- Historical database of performance information
- Good community outreach tool
- "Understandable" to the outside world
- "If your computer doesn't perform well on the LINPACK Benchmark, you will probably be disappointed with the performance of your application on the computer."

HPL - Bad Things

- LINPACK Benchmark is 36 years old
 - TOP500 (HPL) is 20.5 years old
- Floating point-intensive performs O(n³) floating point operations and moves O(n²) data.
- No longer so strongly correlated to real apps.
- Reports Peak Flops (although hybrid systems see only 1/2 to 2/3 of Peak)
- Encourages poor choices in architectural features
- Overall usability of a system is not measured
- Used as a marketing tool
- Decisions on acquisition made on one number
- Benchmarking for days wastes a valuable resource

Running HPL

- In the beginning to run HPL on the number 1 system was under an hour.
- On Livermore's Sequoia IBM BG/Q the HPL run took about a day to run.
 - They ran a size of n=12.7 x 10⁶ (1.28 PB)
 - 16.3 PFlop/s requires about 23 hours to run!!

- The longest run was 60.5 hours
 - JAXA machine
 - Fujitsu FX1, Quadcore SPARC64 VII 2.52 GHz
 - A matrix of size $n = 3.3 \times 10^6$
 - .11 Pflop/s #160 today

#1 System on the TOP500 Over the Past 20 Years (16 machines in that club) 9 6 •

		r_max			
TOP500 List	Computer	(Tflop/s)	n_ma×	Hours	MW
6/93 (1)	TMC CM-5/1024	.060	52224	0.4	
11/93 (1)	Fujitsu Numerical Wind Tunnel	.124	31920	0.1	1.
6/94 (1)	Intel XP/S140	.143	55700	0.2	
11/94 - 11/95 (3)	Fujitsu Numerical Wind Tunnel	.170	42000	0.1	1.
6/96 (1)	Hitachi SR2201/1024	.220	138,240	2.2	
11/96 (1)	Hitachi CP-PACS/2048	.368	103,680	0.6	
6/97 - 6/00 (7)	Intel ASCI Red	2.38	362,880	3.7	.85
11/00 - 11/01 (3)	IBM ASCI White, SP Power3 375 MHz	7.23	518,096	3.6	
6/02 - 6/04 (5)	NEC Earth-Simulator	35.9	1,000,000	5.2	6.4
11/04 - 11/07 (7)	IBM BlueGene/L	478.	1,000,000	0.4	1.4
6/08 - 6/09 (3)	IBM Roadrunner - PowerXCell 8i 3.2 Ghz	1,105.	2,329,599	2.1	2.3
11/09 - 6/10 (2)	Cray Jaguar - XT5-HE 2.6 GHz	1,759.	5,474,272	17.3	6.9
11/10 (1)	NUDT Tianhe-1A, X5670 2.93Ghz NVIDIA	2,566.	3,600,000	3.4	4.0
6/11 - 11/11 (2)	Fujitsu K computer, SPARC64 VIIIfx	10,510.	11,870,208	29.5	9.9
6/12 (1)	IBM Sequoia BlueGene/Q	16,324.	12,681,215	23.1	7.9
11/12 (1)	Cray XK7 Titan AMD + NVIDIA Kepler	17,590.	4,423,680	0.9	8.2
6/13 - 11/13 (2)	NUDT Tianhe-2 Intel IvyBridge & Xeon Phi	33,862.	9,960,000	5.4	17.8

2 🎽

Ugly Things about HPL

- Doesn't probe the architecture; only one data point
- Constrains the technology and architecture options for HPC system designers.
 - Skews system design.
- Floating point benchmarks are not quite as valuable to some as data-intensive system measurements

Many Other Benchmarks

- TOP500
- Green 500
- Graph 500-160
- Sustained Petascale
 Performance
- HPC Challenge
- Perfect
- ParkBench
- SPEC-hpc
- Big Data Top100

- Livermore Loops
- EuroBen
- NAS Parallel Benchmarks
- Genesis
- RAPS
- SHOC
- LAMMPS
- Dhrystone
- Whetstone
- I/O Benchmarks

Goals for New Benchmark

 Augment the TOP500 listing with a benchmark that correlates with important scientific and technical apps not well represented by HPL

- Encourage vendors to focus on architecture features needed for high performance on those important scientific and technical apps.
 - Stress a balance of floating point and communication bandwidth and latency
 - Reward investment in high performance collective ops
 - Reward investment in high performance point-to-point messages of various sizes
 - Reward investment in local memory system performance
 - Reward investment in parallel runtimes that facilitate intra-node parallelism
- Provide an outreach/communication tool
 - Easy to understand
 - Easy to optimize
 - Easy to implement, run, and check results
- Provide a historical database of performance information
 - The new benchmark should have longevity

Proposal: HPCG

- High Performance Conjugate Gradient (HPCG).
- Solves Ax=b, A large, sparse, b known, x computed.
- An optimized implementation of PCG contains essential computational and communication patterns that are prevalent in a variety of methods for discretization and numerical solution of PDEs
- Patterns:
 - Dense and sparse computations.
 - Dense and sparse collective.
 - Data-driven parallelism (unstructured sparse triangular solves).
- Strong verification and validation properties

Model Problem Description

- Synthetic discretized 3D PDE (FEM, FVM, FDM).
- Single DOF heat diffusion model.
- Zero Dirichlet BCs, Synthetic RHS s.t. solution = 1.

 $(np_x \times np_y \times np_z)$

- Local domain: $(n_x \times n_y \times n_z)$
- Process layout:
- Global domain:
- Sparse matrix:
 - 27 nonzeros/row interior.
 - 7 18 on boundary.
 - Symmetric positive definite.

HPCG Design Philosophy

- Relevance to broad collection of important apps.
- Simple, single number.
- Few user-tunable parameters and algorithms:
 - The system, not benchmarker skill, should be primary factor in result.
 - Algorithmic tricks don't give us relevant information.
- Algorithm (PCG) is vehicle for organizing:
 - Known set of kernels.
 - Core compute and data patterns.
 - Tunable over time (as was HPL).
- Easy-to-modify:
 - _ref kernels called by benchmark kernels.
 - User can easily replace with custom versions.
 - Clear policy: Only kernels with _ref versions can be modified.

PCG ALGORITHM

 $\blacktriangleright p_0 := x_0, r_0 := b - A p_0$ • Loop i = 1, 2, ... $\circ z_i := M^{-1} r_{i-1}$ o if i = 1 $\bullet p_i := z_i$ • $\alpha_i := \text{dot_product}(r_{i-1}, z)$ o else • $\alpha_i := \text{dot_product}(r_{i-1}, z)$ • $\beta_i := \alpha_i / \alpha_{i-1}$ • $p_i := \beta_i * p_{i-1} + z_i$ o end if $\circ \alpha_i := dot_product(r_{i-1}, z_i) / dot_product(p_i, A^*p_i)$ $\circ x_{i+1} := x_i + \alpha_i^* p_i$ $\circ r_i := r_{i-1} - \alpha_i^* A^* p_i$ o if $||r_i||_2 <$ tolerance then Stop end Loop

http://tiny.cc/hpcg

Preconditioner

- Hybrid geometric/algebraic multigrid:
 - Grid operators generated synthetically:
 - Coarsen by 2 in each x, y, z dimension (total of 8 reduction each level).
 - Use same GenerateProblem() function for all levels.
 - Grid transfer operators:
 - Simple injection. Crude but...
 - Requires no new functions, no repeat use of other functions.
 - Cheap.
 - Smoother:
 - Symmetric Gauss-Seidel [ComputeSymGS()].
 - Except, perform halo exchange prior to sweeps.
 - Number of pre/post sweeps is tuning parameter.
 - Bottom solve:
 - Right now just a single call to ComputeSymGS().

Symmetric Gauss-Seidel preconditioner

• In Matlab that might look like:

LA = tril(A); UA = triu(A); DA = diag(diag(A));

x = LA y;

```
x1 = y - LA*x + DA*x; % Subtract off extra 
diagonal contribution
```

x = UA x1;

HPCG Parameters

- Iterations per set: 50.
- Total benchmark time for official result:
 - Repeated until 3600 seconds (1 hour run).
 - Anything less is reported as a "tuning" result.
- Coarsening: 2x 2x 2x (8x total).
- Number of levels:
 - 4 (including finest level).
 - Requires nx, ny, nz divisible by 8.
- Pre/post smoother sweeps: 1 each.

Merits of HPCG

- Includes major communication/computational patterns.
 - Represents a minimal collection of the major patterns.
- Rewards investment in:
 - High-performance collective ops.
 - Local memory system performance.
 - Low latency cooperative threading.
- Detects/measures variances from bitwise reproducibility.
- Executes kernels at several (tunable) granularities:
 - nx = ny = nz = 104 gives
 - nlocal = 1,124,864; 140,608; 17,576; 2,197
 - ComputeSymGS with multicoloring adds one more level:
 - 8 colors.
 - Average size of color = 275.
 - Size ratio (largest:smallest): 4096
 - Provide a "natural" incentive to run a big problem.

6000

Performance "Shock"

Mira Partition Size	Peak Gflops	Sustained Gflops	% of peak
ANL's IBM BG/Q		Courte Kumar	sy Kalyan an, Argonne
64 nodes	13107.2	73.4	0.56%
128 nodes	26214.4	147.43	0.56%
256 nodes	52428.8	293.8	0.56%
512 nodes	104857.6	587.97	0.56%
1024 nodes	209715.2	1176.69	0.56%
49152 nodes	10066329.6	55177.6	0.55%

Results for Cielo Dual Socket AMD (8 core) Magny Cour Each node is 2*8 Cores 2.4 GHz = Total 153.6 Gflops/ LANL's Cray XT3

http://tiny.cc/hpcg

Tuning result on the K computer

8 Processes, 8 Threads/Process (Peak 128x8 GFLOPS)

RIKEN Advanced Institute for Computational Science (A

Slide courtesy Naoya Maruyama, RIKEN AICS, and Fujitsu

26

Stampede cluster, dual socket of 8-core SNB, 2.7 GHz
2 MPI processes per node (1 MPI process per skt. for NUMA)
160³ input per MPI process
93% parallelization efficiency with 1024 nodes
University of Texas Austin, NSF's Stampede system 6

27

HPCG and HPL

- We are NOT proposing to eliminate HPL as a metric.
- The historical importance and community outreach value is too important to abandon.
- HPCG will serve as an alternate ranking of the Top500.
 - Similar perhaps to the Green500 listing.

Signs of Interest and Uptake

- Input from a various people at DOE Labs
- Discussions with and results from every HPC vendor.
 - Major, deep technical discussions with several.
- Same with most LCFs.
- Intel-sponsored SC'14 Workshop on Optimizing HPCG.

HPCG Tech Reports

Toward a New Metric for RankingHigh Performance Computing SystemsJack Dongarra and Michael Heroux

HPCG Technical Specification

 Michael Heroux, Jack Dongarra, Piotr Luszczek

http://tiny.cc/hpcg

SANDIA REPORT SAND2013-/8752 Unlimited Release Printed October 2013

HPCG Technical Specification

Michael A. Heroux, Sandia National Laboratories¹ Jack Dongarra and Piotr Luszczek, University of Tennessee

Prepared by Sandia National Laborator

> SANDIA REPORT SAND2013-4744 Unlimited Release Printed June 2013

Toward a New Metric for Ranking High Performance Computing Systems

Jack Dongarra, University of Tennessee Michael A. Heroux, Sandia National Laboratories¹

Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Mark Land Street

Approved for public release; further dissemination unlimited.

The shall have and

Sandia National Laboratories

¹ Corresponding Author, maherou@sandia.gov