Advances in Targeted Radiopharmaceuticals Therapy Using Isotopes to Fight Cancer

Jacek Capala

NCI

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

Theranostic

Therapeutic + Diagnostic = Theranostic

- diagnostic test to identify patients that might respond to a specific treatment
- diagnostic test to monitor early response to treatment and predict efficacy

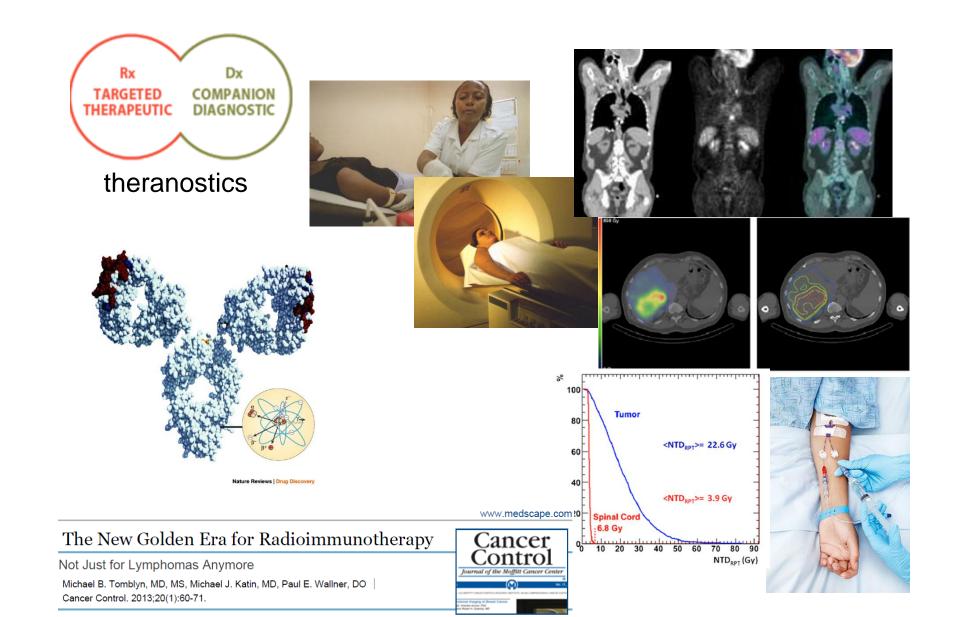
History

- Radioiodine for the diagnosis and treatment of thyroid cancer (1940's)
- Measuring estrogen and progesterone receptors and HER2 expression in breast cancer to guide hormonal and targeted therapy

In nuclear medicine, the same or very similar agent can serve as both a diagnostic and therapeutic agent

- whole body imaging to assess the entire tumor burden
- diagnostic imaging to assess the distribution of targeted epitopes

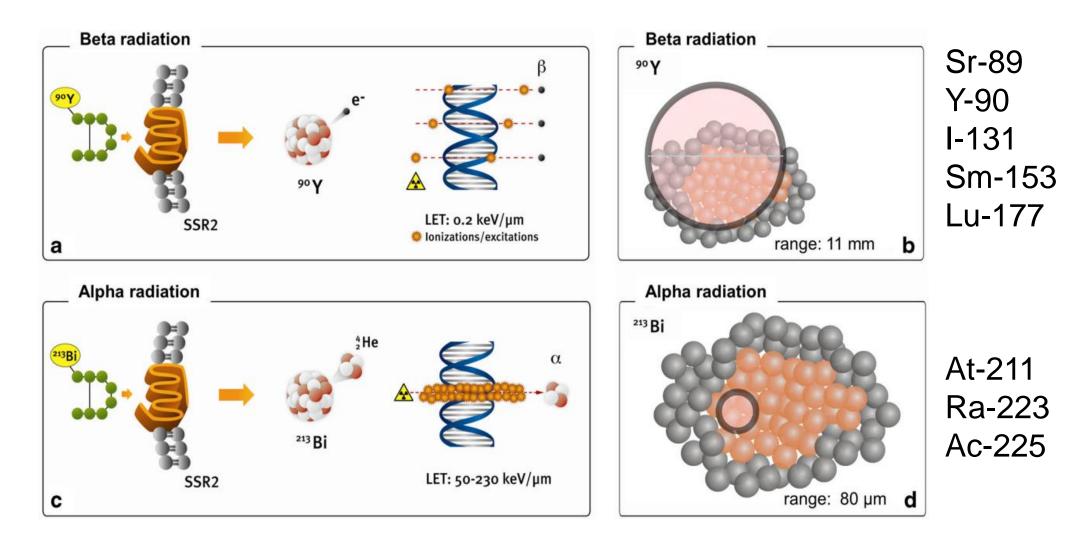
U.S. DEPARTMEN OF HEALTH AND HUMAN SERVICE National Institute of Health


TRT Advantages

- Arming molecularly targeted agents, including those that are currently used, with therapeutic radionuclides enables:
- Cell killing by DNA strand breaks
- Non-invasive monitoring of biodistribution
- Estimation of dose to tumor and normal tissue
- Selective targeting of occult metastatic lesions
- Cross-fire irradiation; circumventing the local heterogeneity problem

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes

of Health


Targeted Radionuclide Therapy (TRT)

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

Therapeutic Radiopharmaceuticals – Beta vs Alpha Emitters

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health

Kratochwil C, et al., 2014. ²¹³Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: a first-in-human experience. Eur J Nucl Med Mol Imaging, 41: 2106-19.

Beta Emitters

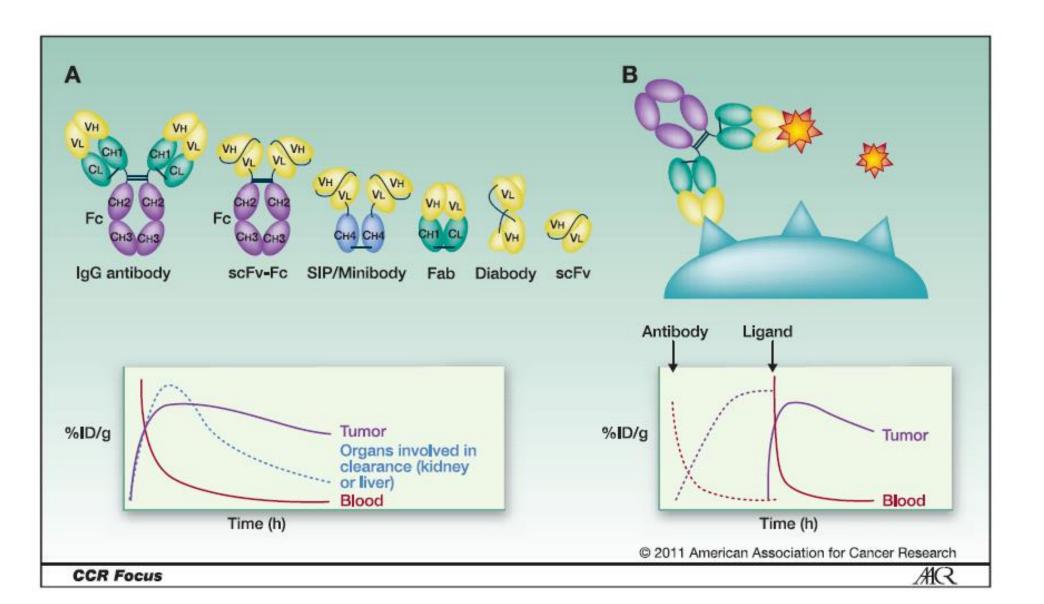
Radio- nuclide	Half- life (d)	E _{mean} (MeV)	Range mean (mm)	E _{max} (MeV)	Range max (mm)	Ε _γ (keV)	Ι _γ (%)
					• •		
P-32	14.3	0.7	3	1.71	9.1		-
Sr-89	50.6	0.59	2.3	1.5	7.8		-
Y-90	2.67	0.93	4.4	2.28	12		-
I-131	8.03	0.18	0.39	0.81	3.7	284 364 637	6.1 81.5 7.2
Sm-153	1.94	0.22	0.55	0.81	3.7	103	29.3
Ho-166	1.12	0.67	2.8	1.85	10	81	6.6
Lu-177	6.65	0.13	0.23	0.50	1.9	113 208	6.2 10.4
Er-169	9.39	0.10	0.14	0.35	1.1		-
Re-186	3.72	0.35	1.1	1.07	5.2	137	9.5
Re-188	0.71	0.76	3.3	2.12	12	155	15.6

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes

of Health

Alpha Emitters

Radio- nuclide	Half- life	Daugh- ters	Half- life	Cumulative α/decay	E _α mean (MeV)	Range (µm)
Tb-149	4.1 h			0.17	3.97	25
Pb-212	10.6 h	Bi-212 Po-212	1.01 h 0.3 _μ s	1	7.74	65
Bi-212	1.01 h	Po-212	0.3 _µ s	1	7.74	65
Bi-213	0.76 h	Po-213	4 _µ s	1	8.34	75
At-211	7.2 h	Po-211	0.5 s	1	6.78	55
Ra-223	11.4 d	Rn-219 Po-215 <i>Pb-211</i> Bi-211	4 s 1.8 ms <i>0.6 h</i> 130 s	4	6.59	>50
Ra-224	3.66 d	Rn-220 Po-216 <i>Pb-212</i> Bi-212	56 s 0.15 s <i>10.6 h</i> 1.01 h	4	6.62	>50
Ac-225	10.0 d	Fr-221 At-217 <i>Bi-213</i> Po-213	294 s 32 ms <i>0.76 h</i> 4 μs	4	6.88	>50
Th-227	18.7 d	Ra-223 Rn-219 Po-215 <i>Pb-211</i> Bi-211	11.4 d 4 s 1.8 ms <i>0.6 h</i> 130 s	5	6.45	>50
U-230	20.8 d	Th-226 Ra-222 Rn-218 Po-214	0.51 h 38 s 35 ms 0.16 ms	5	6.71	>50


U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

J.S. DEPARTMENT OF HEALTH AND IUMAN SERVICES

lational Institutes f Health

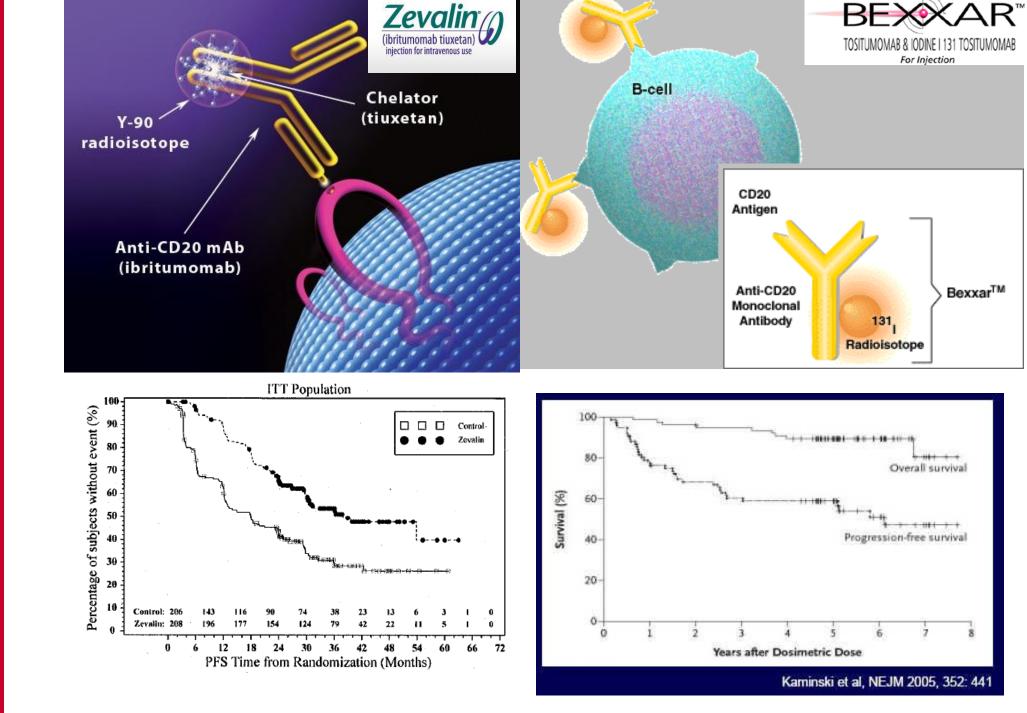
Targeting Agents

Application

Thyroid: 131 Brain: 90Y-mab, 131I-mab (I/II), 211At-mab (I), 213Bi-pept.(I) Lymphoma: Leukemia, myeloma: Zevalin® (90Y-mab) 90Y-mab, 213Bi-mab (II) Bexxar® (131I-mab) 225Ac-mab 131 /177 Lu-mabs (1/11) Medullary Thyroid: Bone metastases: 131 - mab (II) Metastron[®] (⁹⁰SrCl₂) 90Y-pept. Quadramet® (153Sm-EDTMP) Breast: Zofigo® (223RaCl₂) 90Y-mab, 90Y-pept. Neuroblastoma: 212Pb-mab (I) 131 - MIBG Lung (SCLC): Neuroendocrine 177Lu-mab (II) (GEP-NET): Pancreas: 177Lu-peptides (III) 90Y-mab (II) ⁹⁰Y-peptides Ovary: Liver (HCC): 212Pb-mab (I) Theraspheres® & 90Y/177Lu-mab SIRspheres® (90Y) Colon & rectum: Prostate: 188Re-Lipiodol (II) Kidneys (RCC): Melamoma: 131 I-mab (II) 90Y/177Lu-mab (I) ¹⁶⁶Ho-microspheres 177Lu-mab (II) ²¹³Bi-mab(I)

U.S. DEPARTMENT DF HEALTH AND HUMAN SERVICES

National Institutes of Health

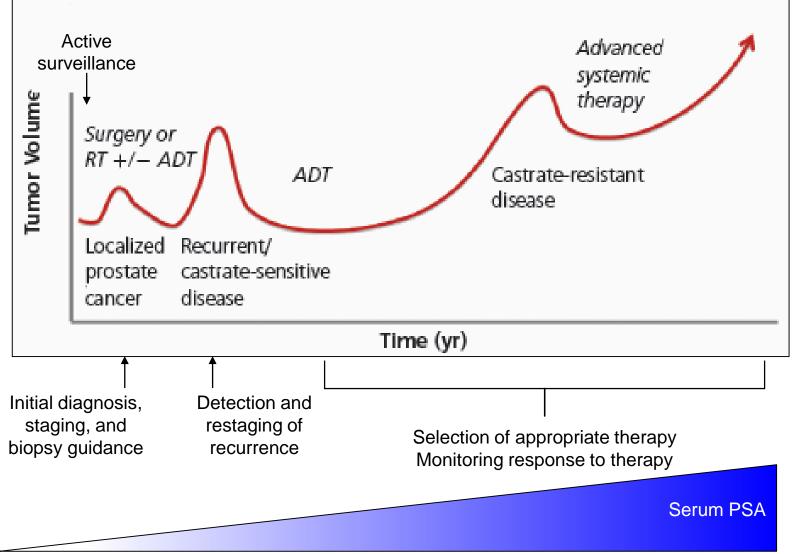

Selumetinib-enhanced Radioiodine Uptake in Thyroid Cancer

J.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

post four week MEK treatment

For Injection

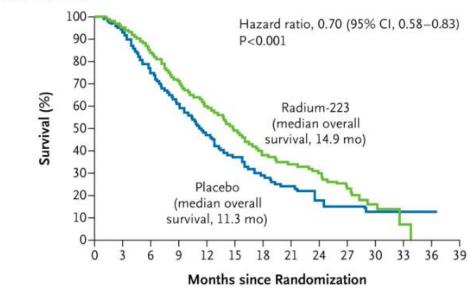

Bexxar™

**** Overall survival

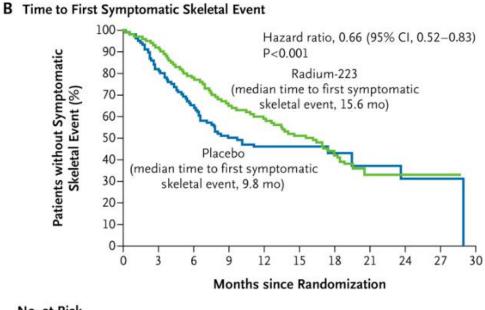
U.S. DEPARTMENT **OF HEALTH AND** HUMAN SERVICES

National Institutes of Health

Prostate Cancer Continuum


Higher serum PSA and faster PSA doubling time are associated with higher yield of PET imaging for biochemical recurrence

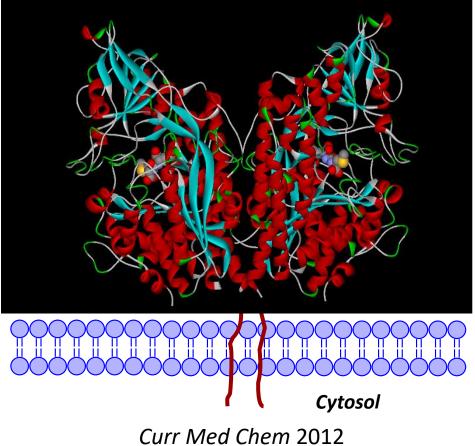
cernetwork.com/oncology-journal/what-should-we-tell-patients-about-physical-activity-after-prostate-cancer-diagnosis


U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health

²²³RaCl₂ for Metastatic Castration-Resistant Prostate Cancer

A Overall Survival

No. at Risk														
Radium-223	614	578	504	369	274	178	105	60	41	18	7	1	0	0
Placebo	307	288	228	157	103	67	39	24	14	7	4	2	1	0

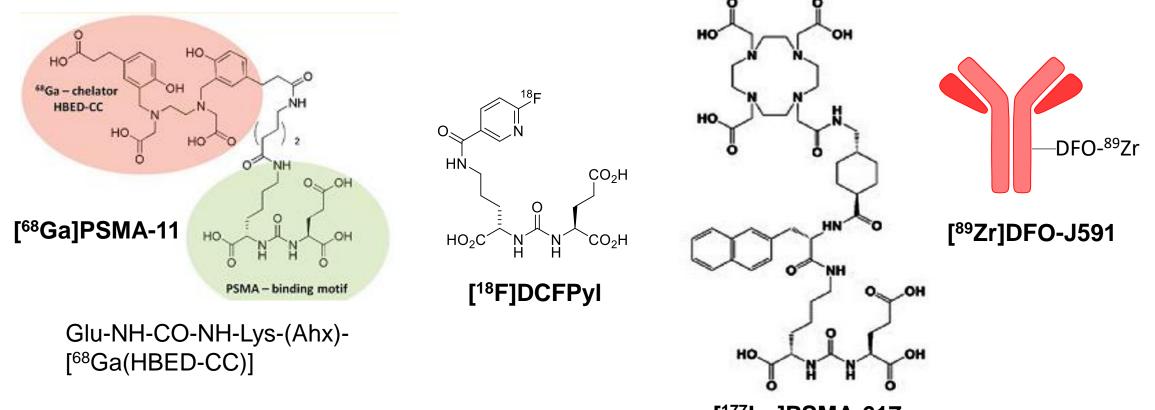


NO. at RISK											
Radium-223	614	496	342	199	129	63	31	8	8	1	0
Placebo	307	211	117	56	36	20	9	7	4	1	0

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

Prostate-specific Membrane Antigen (PSMA)

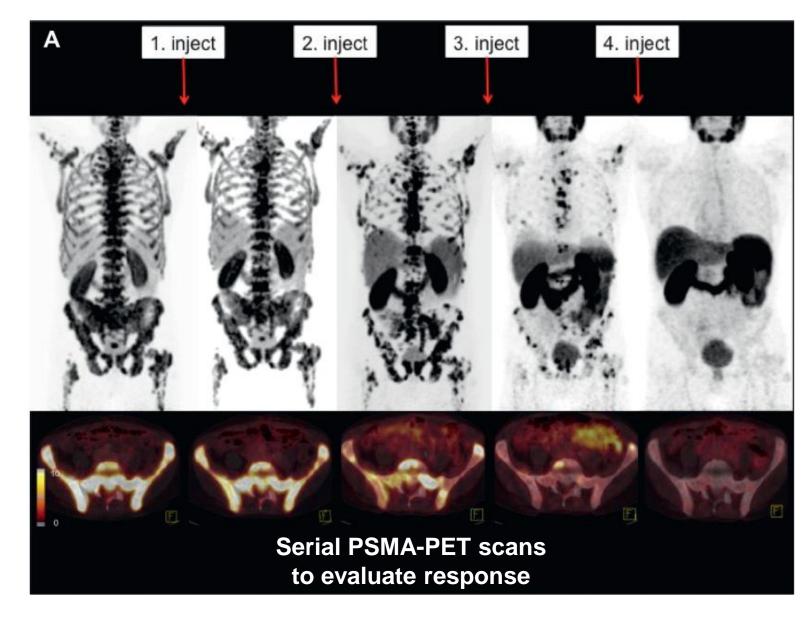

- **Type II transmembrane protein**
- Glutamate carboxypeptidase
- Associated with aggressive disease
- Present in solid tumor neovessels
- Marker of androgen signaling

Membrane

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health

Slide courtesy of Marty Pomper MD, PhD (Johns Hopkins) and Steve Cho MD (University of Wisconsin-Madison)

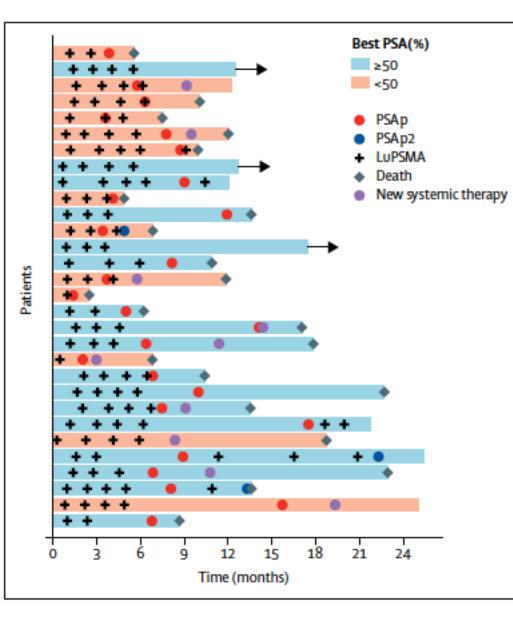
Selected PET Tracers Targeting PSMA

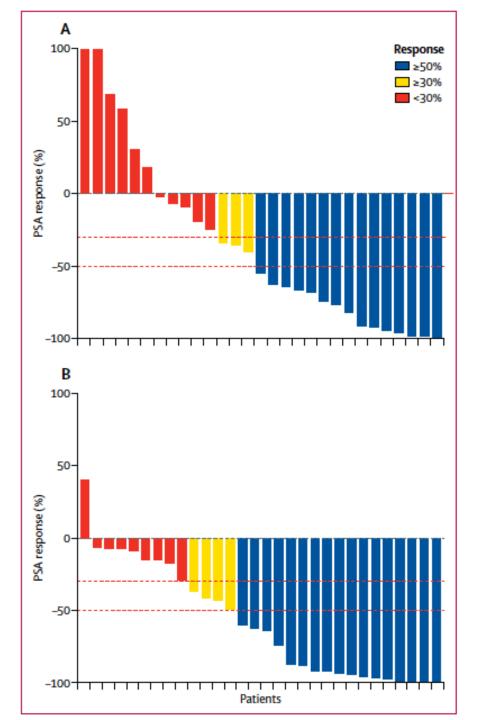


[¹⁷⁷Lu]PSMA-617

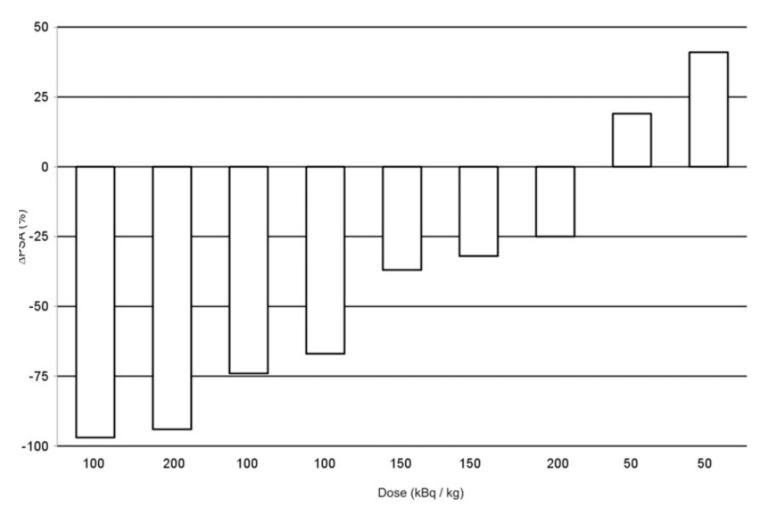
U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

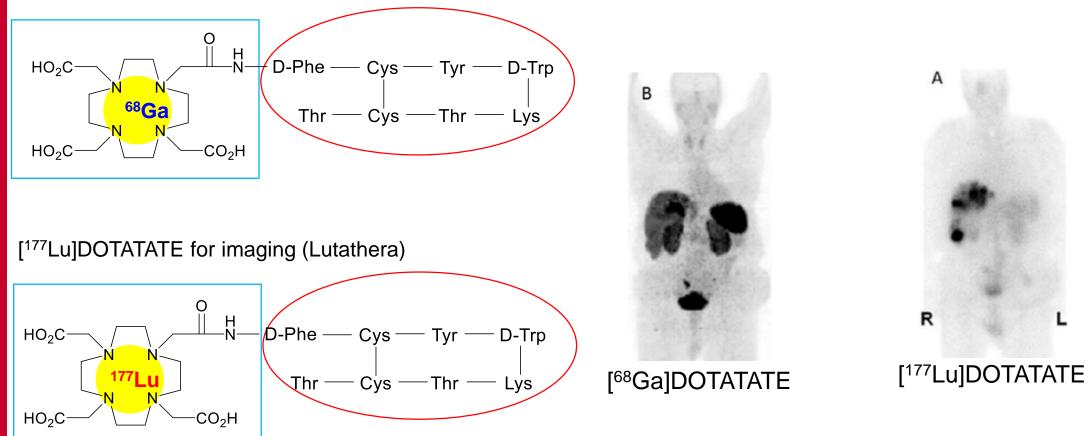

Lu-177 PSMA for TRT


U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health

Heck, MM, et al., 2016. Systemic Radioligand Therapy with ¹⁷⁷Lu Labeled Prostate Specific Membrane Antigen Ligand for Imaging and Therapy in Patients with Metastatic Castration Resistant Prostate Cancer. J Urol, 196: 382-91.


Lu-177 PSMA for TRT

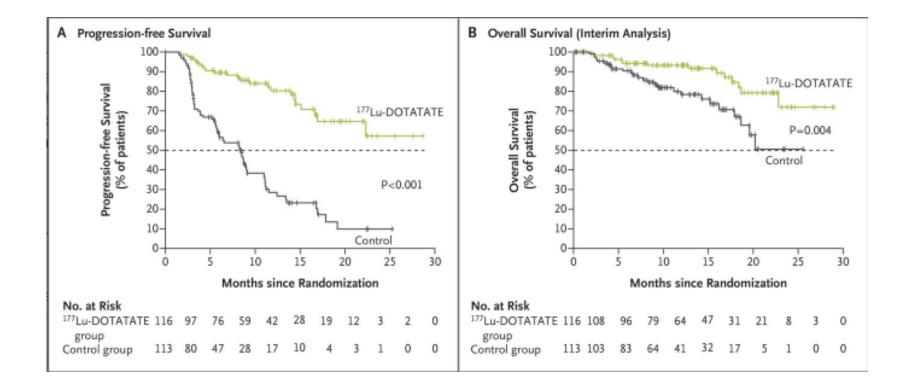
U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health ²²⁵Ac-PSMA-617 for TRT


Waterfall graph of PSA response in evaluable patients. PSA response was observed in 75% of patients. No dose–response correlation was observed the 100–200 kBq/kgBW treatment activities

THE JOURNAL OF NUCLEAR MEDICINE • Vol. 58

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health

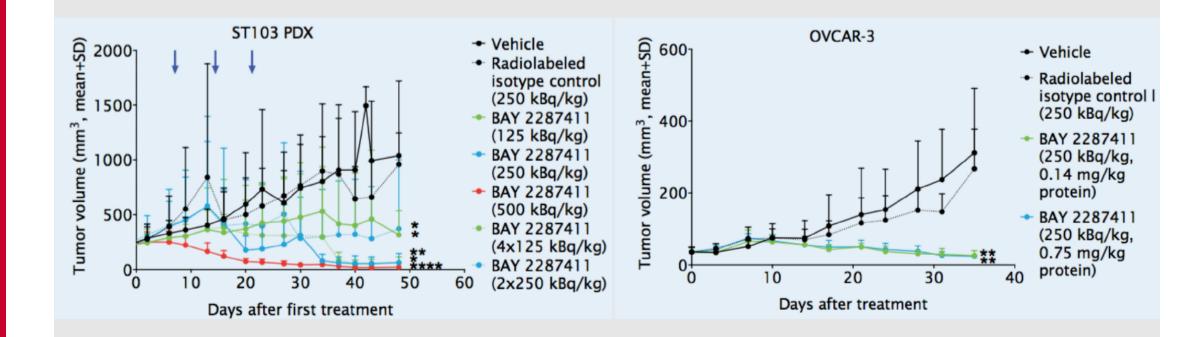
Recently Approved Theranostic Approach


[68Ga]DOTATATE for imaging (NETSPOT)

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health Sainz-Esteban, A, et al., 2012. Eur J Nucl Med Mol Imaging, 39: 501-11.

Phase 3 Trial of ¹⁷⁷Lu-Dotatate for Midgut Neuroendocrine Tumors



N Engl J Med 2017; 376:125-135<u>January 12, 2017</u> DOI: 10.1056/NEJMoa1607427

S. DEPARTMENT F HEALTH AND UMAN SERVICES

ational Institutes Health

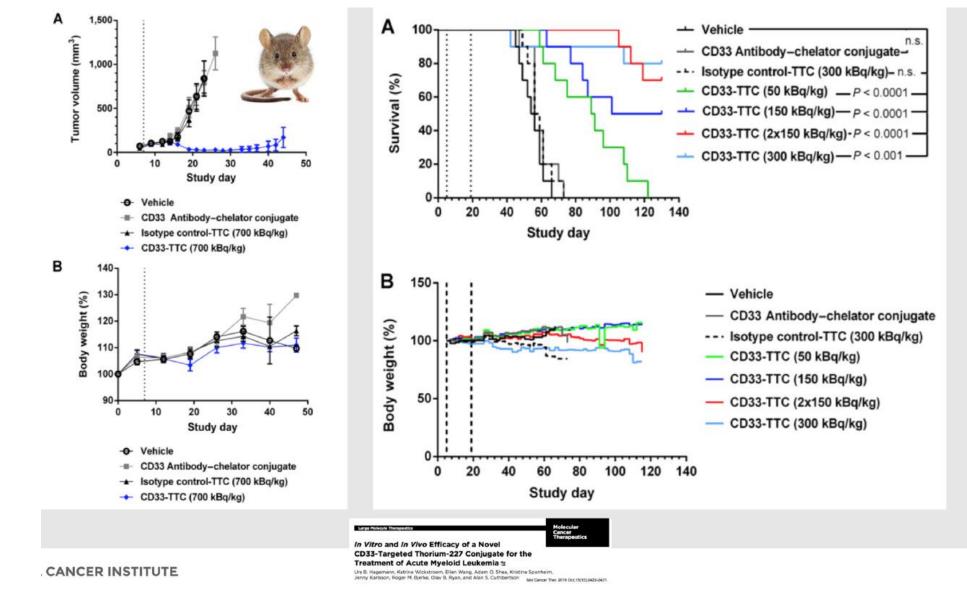
Mesothelin-Targeted Th-227 Radioconjugtes

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes

of Health

850

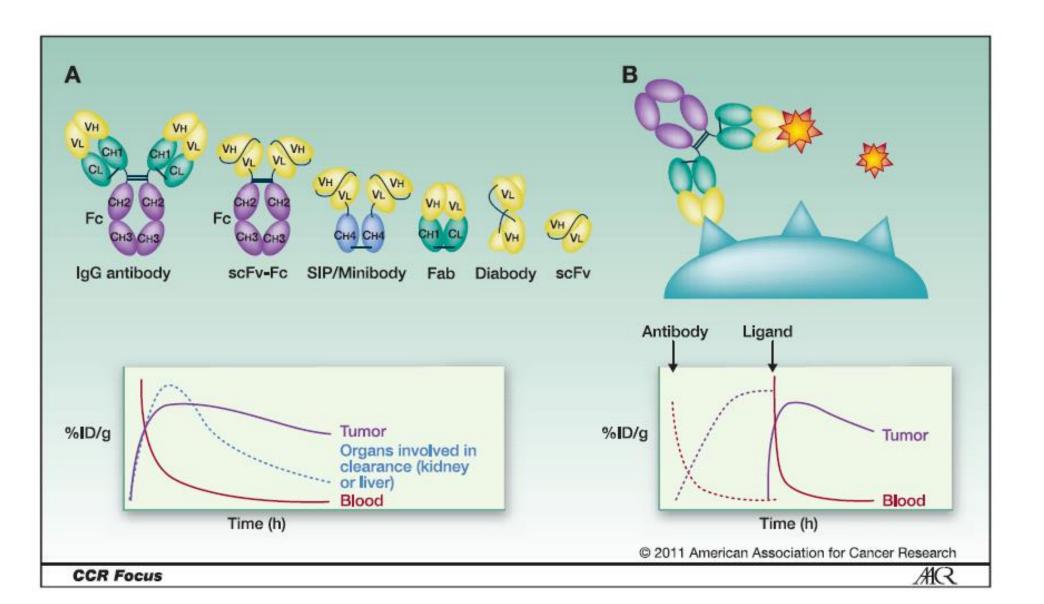
Mesothelin-Targeted Thorium-227 Conjugate (MSLN-TTC; BAY 2287411): Preclinical evaluation of a new targeted alpha therapeutic in mesothelin-positive cancers Urs B Hagemann', Alexander Kristian', Christine Ellingsen', Veronique Crucian?, Katrine Wickstroem', Anne Mobergslien', Jenny Karlsson', Roger M Bjerke', Christoph Schatz', histoph Knep!, Joachim Schuhmacher', Uw-Ingrid-Oedegaardstuer', Hartwa Hennekes', Anna Tafuri', Dominik Mumberg', Hanno <u>Wild', Karl Zweelbauer' end Alan Cuthbertso</u>


Baver AG, Pharmaceutical Division, Berlin, Germany: 'Baver AS, Pharmaceutical Division, Oslo, Norway, 'Baver AG, I

American Association for Cancer Research, 2018

22

CD33-Targeted Th-227 Radioconjugate

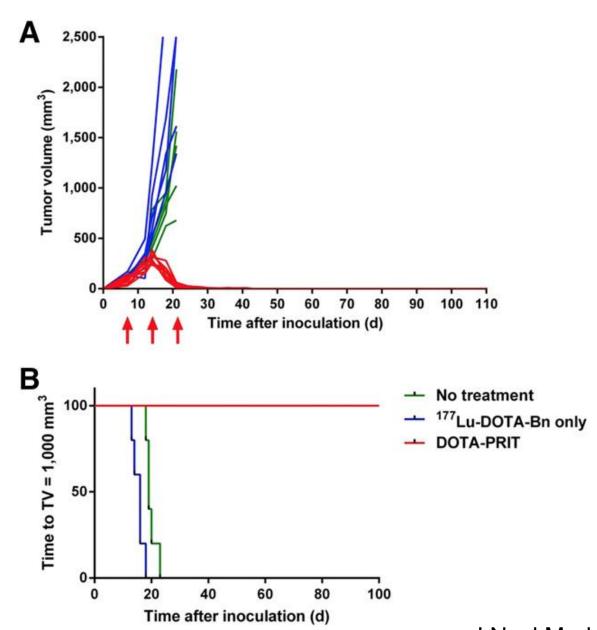

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

J.S. DEPARTMENT OF HEALTH AND IUMAN SERVICES

lational Institutes f Health

Targeting Agents



Pre-targeting Α Anti-GPA33 -CO2 O2C (M)-DOTA-Bn = M³ NH₃ $^{-}O_{2}C$ $CO_2^ K_{\rm D}$ C825 15.4 ± 2.0 pM Anti-(M)-DOTA-Bn Y-DOTA-Bn Lu-DOTA-Bn 10.8 ± 2.5 pM В M Bispecific antibody Mapten/Dextran clearing agent M-DOTA complex Blood 2016 MSKCC Tumor Tumor Tumor J Nucl Med 2017; 58:1735–1742

I.S. DEPARTMENT OF HEALTH AND IUMAN SERVICES

lational Institutes f Health

Pre-targeting

I.S. DEPARTMENT OF HEALTH AND IUMAN SERVICES

lational Institutes f Health

J Nucl Med 2017; 58:1735–1742

Summary

Approved

- Sodium Iodine-131
 - Thyroid cancer
 - Hyperthyroidism
- Ra-223 dichloride for CRPC
- Sm-153 EDTMP, Sr-89 for osseous metastases
- I-131 tositumomab, Y-90 ibritumomab tiuxetan for lymphoma
- Intracavitary therapy with P-32 colloid
- Hepatic arterial radioembolization with Y-90 microspheres
- I-131-MIBG
- Lu-177-DOTATATE for NETs

Investigational

- PRRT
 - Y-90 DOTATOC
 - Lu-177 antagonists
- PSMA
 - I-131, Lu-177, Bi-213, Ac-225
- Ra-223 dichloride outside CRPC
- Radiolabeled antibodies
 - I-131 or Ac-225 antibody for leukemia
- At-211 MABG
- Mesothelin-Targeted or CD33-Targeted Th-227
- HER2-targeted Pb-212
- Many, many others

OF HEALTH AND HUMAN SERVICES National Institutes of Health

U.S. DEPARTMEN

Challenges and opportunities

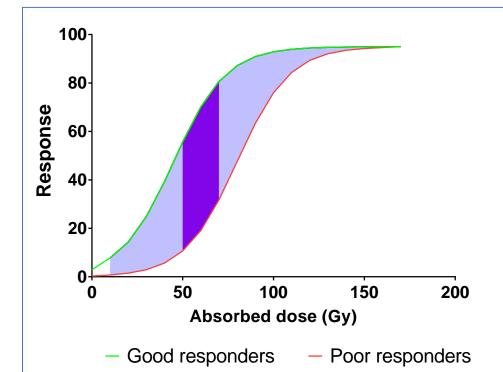
- Reliable and economically viable supply chain of radionuclides for theranostics for preclinical research, clinical trials, and routine use
- Funding to support preclinical and early translational theranostic development
- Regulatory approval pathways for theranostics that address both the imaging and therapeutic aspects of the agent
- Adequate reimbursement for FDA-approved diagnostic and therapeutic agents
- Clinical adoption of approved theranostic agents
- Potential competition with other cancer therapies
- Incorporation earlier in cancer treatment and combination with other disease-specific treatments
- OF HEALTH AND HUMAN SERVICES National Institutes of Health
- Individual treatment planning

Treatments historically governed by activity administered:

- 100 mCi radioiodine for thyroid ablation
- 200 mCi radioiodine for thyroid therapy
- 200 mCi Y-90 microspheres for treatment of liver metastases
- 200 mCi I-131 mIBG for neuroendocrine tumours
- 200 mCi x 4 for Y-90 DOTATATE of neuroendocrine tumours
- 200 mCi x 4 for Lu-177 DOTATATE for neuroendocrine tumours
- 200 mCi x 4 for Lu-177 PSMA for bone metastases
- 50 kBq/kg x 6 for Ra-223 for bone metastases

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Empirical (chemotherapy) paradigm – learning from observation and experience...

Chemotherapy-like approach leading to significant differences in the dose delivered to tumor and normal tissues


I-131 Nal for DTC (mGy / MBq)	Ra-223 for bone metastases (mGy / MBq)	Lu-177 PRRT (mGy / MBq) from Eberlein Et al J Nucl Med 2017
Red marrow: Bianchi (2012) 0.04 – 0.4	Red marrow: Chittenden (2015) 177-994	Red marrow: 0.1 - 0.13
Metastatic lesions: Kolbert (2007) 0.03 – 2.6	Lesions: Pacilio (2016) 0.9 – 8.9	Tumor 3.9 - 37.9 0.1 - 20.0 1.4 - 23
Salivary glands: Jentzen (2006) 0.2 - 1.2	Kidneys: Chittenden (2015) 2-15	Kidneys: 0.33 - 2.4 0.27 - 1.35
Thyroid remnants: Minguez (2016) 0.2 - 160	Bone surfaces Chittenden (2015) 2331 – 13118	

Absorbed doses from fixed activities of I-131 NaI, Ra-223 and Lu-177 vary by ~1 order of magnitude for organs at risk and 2 orders of magnitude for target volumes

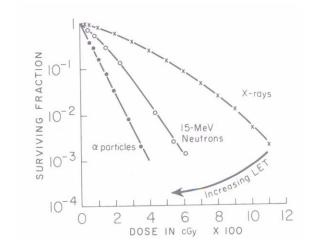
National Institutes of Health

Clinical trials

Treatment according to Gy, even with an uncertainty on the absorbed dose, will deliver a narrower range of responses.

Example:

Target absorbed dose 60 Gy, with a 30% uncertainty.


An RCT would be comparing a large range of unknown doses with a narrow range of known doses

Randomising between knowledge vs ignorance...

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health

The need to optimize the treatment

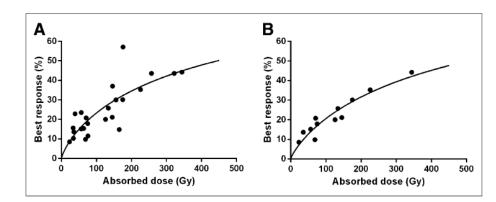
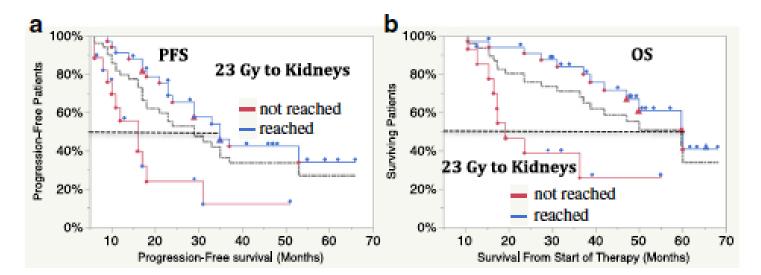



FIGURE 5. Tumor dose–response relationship for patients with PNETs treated with PRRT using ¹⁷⁷Lu-DOTATATE, including tumors larger than 2.2 cm (A) and only tumors larger than 4 cm (B).

50 patients who received prescribed four cycles of 177Lu-DOTAoctreotate.

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes

of Health

European Journal of Nuclear Medicine and Molecular Imaging (2018) 45:970–988

TO DO OR NOT TO DO DOSIMETRY?

That is *not* the question:

- Patient safety
- Treatment justification (patient selection)
- Treatment optimisation
- Health economics

Just a matter of time and effort

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health

National Cancer Institute

Thank you

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health