Recently Approved and Potential Future Drugs and Their Isotopes

Eldon E. Leutzinger, Ph.D.

Office of New Drug Products, OPQ CDER / FDA

4th Workshop on Isotope Federal Supply and Demand November 9, 2015 Residence Inn, Bethesda, MD

Outline of Presentation

- 1. PET Drugs new developments
 - A. The mounting interest in ⁶⁸Ga
 - B. Trending toward radiotheranostics
 - C. Molecular biomarkers with PET ⁸⁹Zr-based immuno-PET molecular imaging in cancer patients
- 2. Recent approvals
 - A. $PET {}^{11}C, {}^{18}F$
 - B. First alpha-emitting drug Xofigo (²²³RaCl₂)
- 3. 99m Tc what is new for an old isotope
 - A. New addition Lymphoseek imaging of lymph nodes
 - B. Establishing a domestic supply of ⁹⁹MO

PET Drugs – New Developments

The mounting Interest in ⁶⁸Ga

- Rapidly increasing number of publications with ⁶⁸Ga since 2008 – overall 660 publications since 1966
- Increasing number of incoming IND's with ⁶⁸Ga over last 5 years

The mounting interest in ⁶⁸Ga

- High positron emission fraction 89%, E_{max} at 1899 KeV, E_{mean} at 890 KeV), providing sufficient radioactivity levels for high-quality images
- > With $t_{1/2}$ of 68 min, radiation dose to patients is minimized
- Robust radiolabeling chemistry
- Use of "kit + generator" concept to make ⁶⁸Ga-drugs available
- Availability of commercial generators
- Potential use of ⁶⁸Ga in radiotheranostics

U.S. Food and Drug Administration Protecting and Promoting Public Health

Robust radiolabeling chemistry

⁶⁸Ga-DOTATOC / ⁶⁸Ga-DOTATATE Detection of neuroendocrine tumors

- Advantage of using DOTA chelate
- Mild reaction conditions with ⁶⁸Ga³⁺
 - Stability of disulfide bond
- Rigid cage offers stability against ⁶⁸Ga³⁺-dissociation

5

Use of "kit + generator concept" to make ⁶⁸Gadrugs available – regulatory pathway

Kit concept – after well-established ^{99m}Tc kits (from 1970 with first of the radiopharmaceutical kits – ^{99m}Tc-DTPA). **Kits approved under NDA**.

⁶⁸Ga generator – without "stand-alone" indication – DMF (Type II)

www.fda.gov

> Availability of ⁶⁸Ge/⁶⁸Ga generators

Eckert & Ziegler (Ziegler Radiopharma, Inc, Germany – $TiO_2 - 0.1N$ HCI

ITG (Isotope Technologies Garching, Germany) – organic matrix – 0.05N HCI eluent

iThemba (iThemba Labs, South Africa) – SnO₂ – 0.6N HCI

⁶⁸Ge/⁶⁸Ga Generator

- Short glass column packed with metal oxide solid matrix
- ➢ ⁶⁸Ge⁴⁺ (some chemical form) absorbed onto matrix
- \succ ⁶⁸Ge (275 d) → ⁶⁸Ga (68.3 min) → stable ⁶⁸Zn (at Secular equilibrium, ⁶⁸Zn > ⁶⁸Ga by 10-fold)
- Labeling interference ⁶⁸Zn²⁺ also labels DOTA-peptides

- > First elution discarded ${}^{68}Ga/{}^{68}Zn = 1.2$ at 136 min
- Use more ligand; remove ⁶⁸Zn²⁺ prior to radiolabeling
- Interference by other cations (Cu²⁺, Fe³⁺/Fe²⁺, ...)

⁶⁸Ge/⁶⁸Ga Generator

SOURCE of ⁶⁸Ge

- Cyclotron-produced,^{nat}Ga (p,xn)⁶⁸Ge; but, only one commercial source for ⁶⁸Ge for use in production of generators
- Looms as potential problem in the face of mounting interest in ⁶⁸Ga, with the specter of potential future availability issues
- Assurance of ⁶⁸Ge quality at some risk, due to loss of good handle on its production, target quality, bombardment characteristics, etc. (similar to issues for ⁹⁹Mo, ⁸²Sr,)

Trending toward radiotheranostics

Turning an imaging drug into a therapeutic counterpart in a diagnostic / therapy pair

- ⁶⁸Ga/¹⁷⁷Lu choice of chelate is essential in vivo performance / targeting properties must be similar as possible between imaging and radiotherapeutic molecules
- To establish pre-therapeutic quantification of receptor sites, uptake kinetics, dosimetry

> Allow for therapy selection / planning in personalized medicine

⁸⁹Zr-Based Immuno-PET (molecular imaging in cancer patients) Conjugation strategy with N-succinimidyI DFO

Low energy positrons (395 KeV, ave) – high resolution PET images; $t_{1/2}$ =78.4 hr

DFO a good chelator, releasing only 0.2% of free ⁸⁹Zr⁴⁺

Issues: interference of chelator with antigen-binding domain

Visualize / characterize tumor images

n-Succinimidyl-DFO

Recent Approvals

<u>PET Drugs –</u>

¹¹Choline – 2012 – in suspected prostate cancer recurrence

$$\begin{bmatrix} CH_3 \\ H_3^{11}C - N^+ - CH_2 - CH_2 - OH \\ I \\ CH_3 \end{bmatrix} CI^-$$

¹⁸F-Florbetapir (Amyvid) – 2012 – in patients with suspected Alzheimer's Disease – estimate βamyloid plaque density

Recent Approvals

<u>Radium</u> (²²³Ra) -

Xofigo $- {}^{223}RaCl_2 - 2013 -$ first alpha-emitting drug for treatment of castration-resistant prostate cancer

- Predominantly alpha emitter energetic short range (<0.1 mm)</p>
- Induces greater lethal tumoricidal effects
- Less surrounding tissue exposure / less hematologic toxicity and myelosuppression

^{99m}Tc – What is New for an Old Isotope

- An isotope with rich experience history, with 20+ ^{99m}Tc drugs approved from early 1970's – "nuclear medicine workhorse," accounting for 80% of procedures performed in U.S.
- Adds another Lymphoseek (technetium Tc 99m tilmanocept) 2013 imaging of lymph nodes

Lymphoseek -

- Lymphatic mapping with handheld gamma counter
- Locate lymph nodes draining a primary tumor
- Guiding sentinel lymph node biopsy-breast cancer, melanoma, oral cancer

^{99m}Tc- its prominent place in nuclear medicine continues

- Activities toward establishing a reliable domestic supply of ⁹⁹Mo for production of ^{99m}Tc generators
- General Atomics recently received award of \$9.7 million from NNSA to develop unique technical methods to produce ⁹⁹Mo
- Collaborative project combining capabilities of MURR and Nordion with General Atomics gas extraction technology to produce LEU
- ➢ Northstar use low specific activity ⁹⁹Mo in technetium generators

Thank You