Center for Cancer Research

Xe-129 as a Replacement for He-3 in Hyperpolarized Lung Imaging Murali Cherukuri (NCI), Simhan Danthi (NHLBI)

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Work in my group:

¹³C tracers for hyperpolarized tumor imaging in clinic in prostate, brain, and kidney cancers to define surgical margins.

Slides on hyperpolarized lung imaging with He-3 and Xe-129 presented today are from:
Prof. John Mugler, U. Virginia
Prof. Sean Fain, U. Wisconsin
Prof. Dmitriy A. Yablonskiy, Washington University

Why He-3 MRI?

The burden of lung disease

- COPD: chronic obstructive pulmonary disease
 - 3rd leading cause of death in U.S.¹
 - More than 10 million adults in U.S. have COPD² and an estimated 64 million worldwide³
 - National cost of ~\$50 billion⁴

¹CDC. Natl Center for Health Statistics. Final Vital Statistics Report. Deaths: Final Data for 2007. ²CDC. Natl Center for Health Statistics: Natl Health Interview Survey Raw Data, 2008. Analysis by American Lung Assoc. ³The global burden of disease: 2004 update, published 2008. ⁴NIH-NHLBI. Morbidity and Mortality: 2009 Chartbook on Cardiovascular, Lung and Blood Diseases.

The burden of lung disease

- Asthma
 - Affects 19 million adults and 7 million children in U.S.¹
 - Leading cause of school absences from a chronic illness²
 - National cost of ~\$18 billion³

¹CDC. Natl Center for Health Statistics. Summary Health Statistics: National Health Interview Survey, 2010. ²Condition of Education, NCES, U.S. Department of Education 2001. ³The Costs of Asthma, Asthma and Allergy Foundation 1992 and 1998 Study, 2000 Update.

The burden of lung disease

- CF: cystic fibrosis
 - ^{2nd most common life-shortening, inherited disorder in U.S. children¹}
 - Affects ~30,000, with ~10 million genetic carriers²
 - Median age of survival less than 40 yrs²

¹CDC. Newborn Screening for Cystic Fibrosis. Morbidity and Mortality Weekly Report. October 15, 2004; 53(RR13):1-36. ²Cystic Fibrosis Foundation. About Cystic Fibrosis: What You Need to Know. (www.cff.org/AboutCF/).

Standard of care: PFTs

Advantages

 Functional information: ventilation, gas-exchange

- ✓ Widely available
- ✓ Inexpensive, easy to administer

Disadvantages

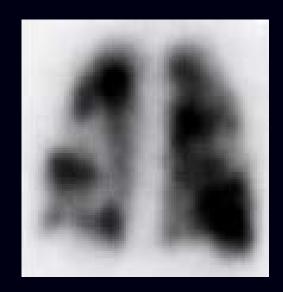
- × NO regional information
- × Insensitive to early disease and gradual progression
- **×** Issues with reproducibility

¹PFTs = Pulmonary Function Tests (spirometry, body plethysmography, DLCO)

FEV₁: forced expiratory volume in 1 sec.

Clinical modalities: CT

- Advantages
 - High spatial (sub-millimeter) and temporal resolution
 - ✓ Widely available


- Quantitative evaluation of tissue density
- Disadvantages
 - **x** Radiation (limitation for longitudinal or pediatric studies)
 - **×** Spatial resolution less than alveolar size
 - Challenging to obtain direct functional information

Clinical modalities: Nuclear medicine

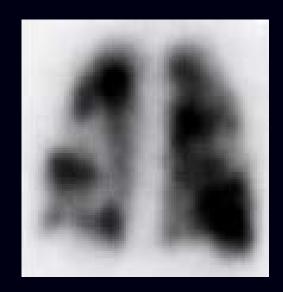
Advantages

 Functional information: ventilation, V/Q mismatch

Widely available

Disadvantages

x Radiation (limitation for longitudinal or pediatric studies)


- **×** Poor spatial and temporal resolution
- **×** Very limited structural information

Clinical modalities: Nuclear medicine

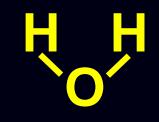
Advantages

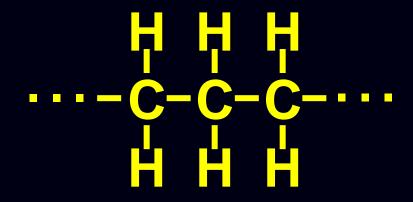
 Functional information: ventilation, V/Q mismatch

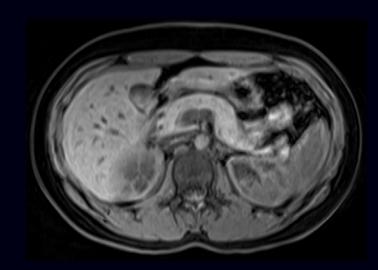
Widely available

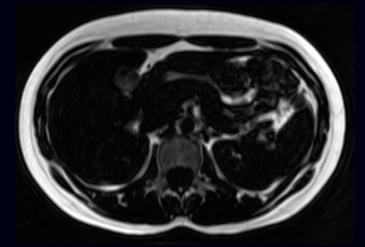
Disadvantages

x Radiation (limitation for longitudinal or pediatric studies)

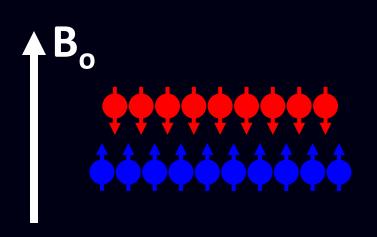

- **×** Poor spatial and temporal resolution
- **×** Very limited structural information

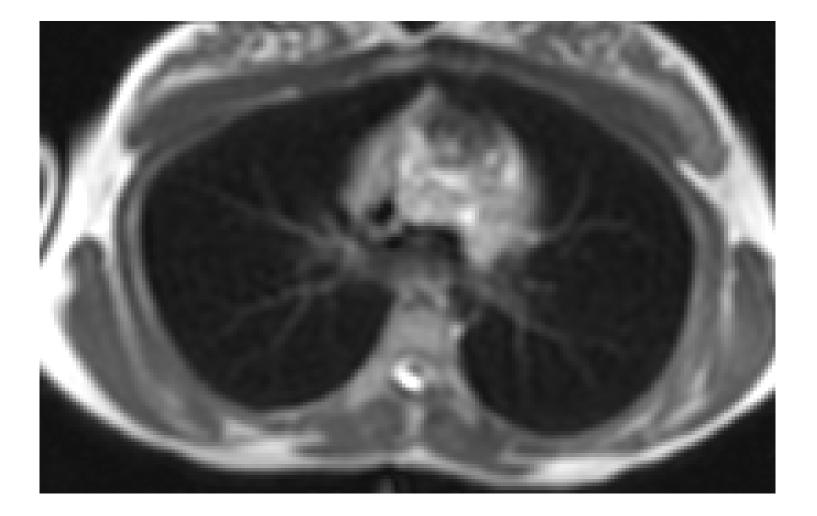

Motivation:


- High health and societal impact of lung disease
- Clear need for improved regional assessment of lung structure & function

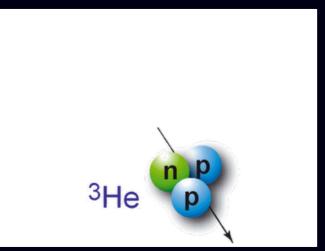

Conventional proton MRI

- Signal source
 - Nuclear magnetic moment ("spin") of protons in water & fat molecules




Conventional proton MRI

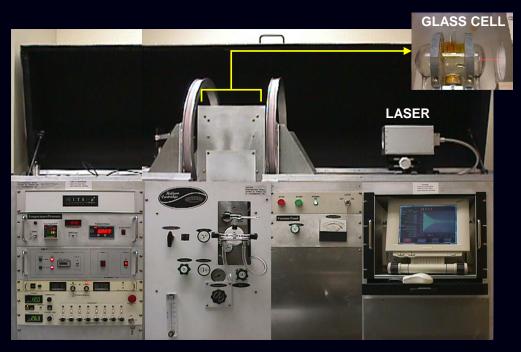
- Signal strength
 - Alignment (nuclear polarization) of spins in scanner magnet
 - Proportional to magnet strength (B_o)
 - Polarization on the order of parts per million (~10⁻⁵)



Conventional (¹H) MRI

Hyperpolarized-gas MRI

- Signal source
 - Nuclear magnetic moment of helium-3 or xenon-129 noble-gas atoms
- Helium-3 (³He)
 - Rare isotope of helium
 - Product of tritium (³H) decay
- Xenon-129 (¹²⁹Xe)


tecno-chemistry.blogspot.com

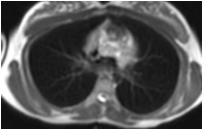
- Natural component of atmosphere (0.001%)
- 26% isotopic abundance

Hyperpolarized-gas MRI

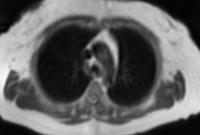
- Signal strength
 - Nuclear polarization created by <u>external</u> laser-based device ("polarizer")
 - Independent of scanner magnet strength
 - Polarization ~50%

Hyperpolarized-gas imaging protocol

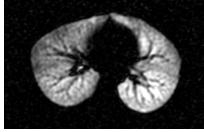
Dynamic Imaging of Respiratory Maneuvers

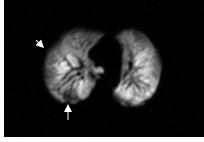

Holmes, JH et al. Magn Reson Med. 2009 Dec;62(6):1543-56.

Severe Asthma Research Program

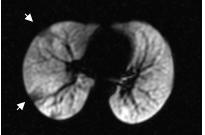

Imaging of Ventilation

Conventional (1H) and Hyperpolarized 3He MRI

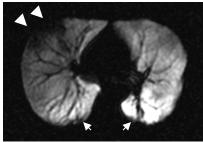

¹H MRI Normal


¹H MRI Normal

³He MRI Normal



³He MRI Normal



³He MRI

Moderate Asthma

Severe Asthma

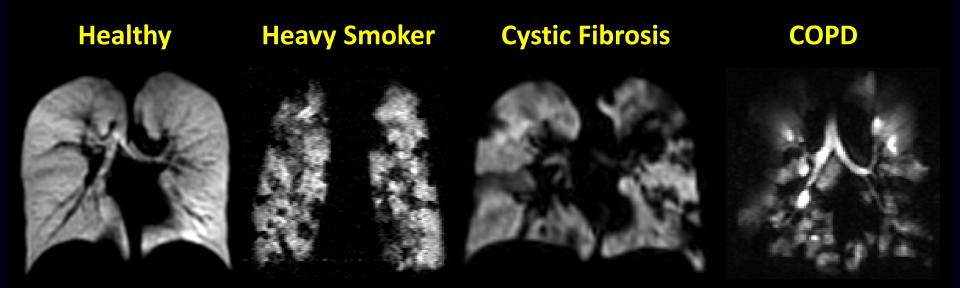
Castro et al., "Lung imaging in Asthma: The picture is clearer," JACI J Allergy Clin Immunol. 2011 May 31.

Severe Asthma Research Program

Lung function & structure with ³He

Ventilation

Microstructure


Alveolar oxygen concentration

Pulmonary biomechanics

Ventilation

 Static: distribution of gas following inhalation
Low-flip-angle gradient-echo pulse sequence during breath hold

Pathology induces ventilation "defects"

Ventilation

- Dynamic: distribution of gas during respiration
 - Repeated acquisition using low-flip-angle GRE pulse sequence
 - Spiral or radial k-space sampling
- Air trapping
- Gas washout rate and quantitative (specific) ventilation asnout rate

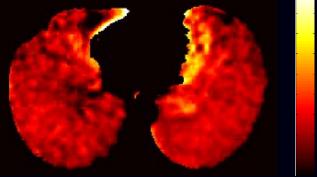
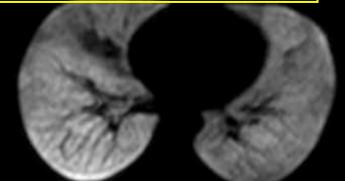
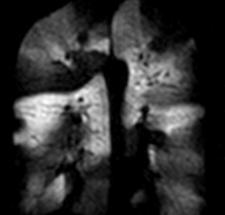


Fig. 3 from MH Deppe et al. ISMRM 2011; 910

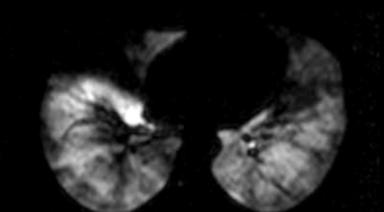

0.0

Ventilation: Applications in disease

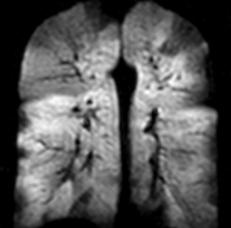
- COPD / Emphysema
- Asthma
- Cystic fibrosis
- Lung transplant / rejection


Asthma: Provocation & treatment

Provocation: Exercise



Baseline: FEV₁ 103%


Treatment: Albuterol

Baseline: FEV₁ 36%

Post-exercise: FEV₁ 40%

Post-Albuterol: FEV₁ 57%

Samee S et al. J Allergy Clin Immunol 2003.

³He in short supply.

Supply issue focuses attention on the alternative agent: ¹²⁹Xe

¹²⁹Xe to the rescue:

Is ¹²⁹Xe a viable replacement for ³He?

¹²⁹Xe vs. ³He for lung MRI

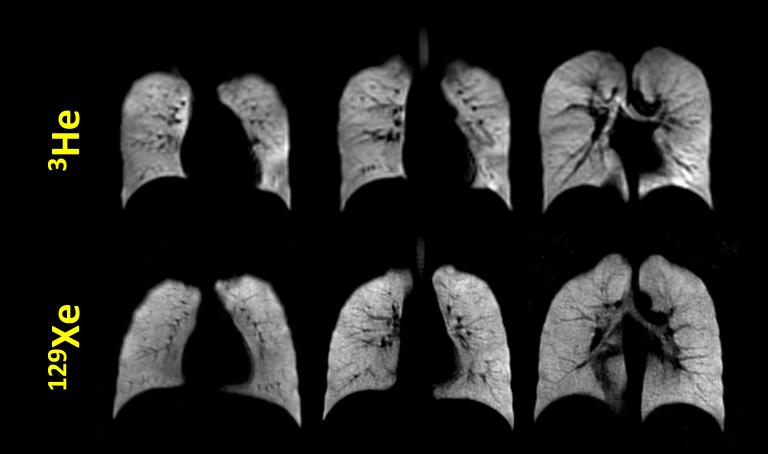
	³ He	¹²⁹ Xe
Gyromagnetic ratio (γ) [MHz/T]	32.4	11.8
Diffusivity in air [cm ² /s]	~0.9	~0.1
Polarization for ~1 L (historic)	~50%	~10%

- ³He easier to polarize
- Advances in ¹²⁹Xe polarization needed

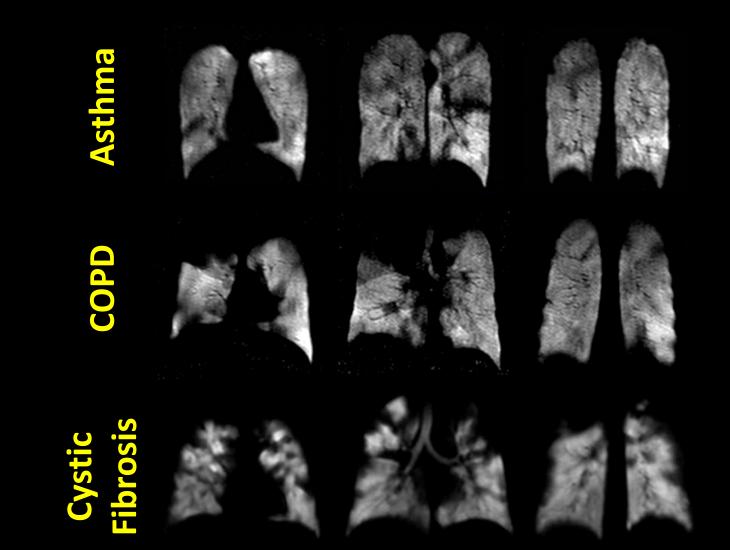
¹²⁹Xe vs. ³He for lung MRI

	³ He	¹²⁹ Xe
Gyromagnetic ratio (γ) [MHz/T]	32.4	11.8
Diffusivity in air [cm ² /s]	~0.9	~0.1
Polarization for ~1 L (historic)	~50%	~10%
Solubility	negligible	high in lipids

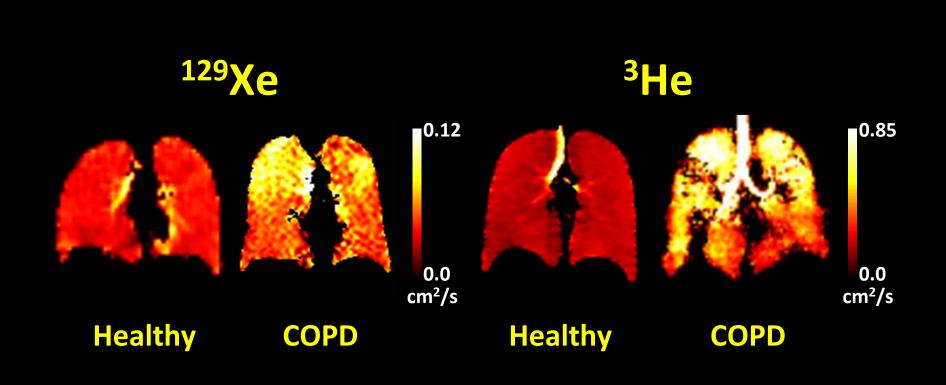
• ¹²⁹Xe can probe pulmonary gas exchange

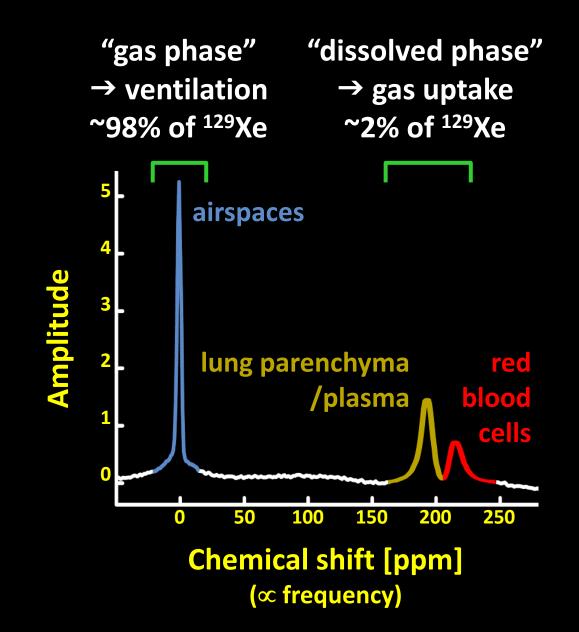

• ¹²⁹Xe has anesthetic side effects

¹²⁹Xe vs. ³He for lung MRI


	³ He	¹²⁹ Xe
Gyromagnetic ratio (γ) [MHz/T]	32.4	11.8
Diffusivity in air [cm ² /s]	~0.9	~0.1
Polarization for ~1 L (historic)	~50%	~10%
Solubility	negligible	high in lipids
Sensitivity to local environment	negligible	exquisite

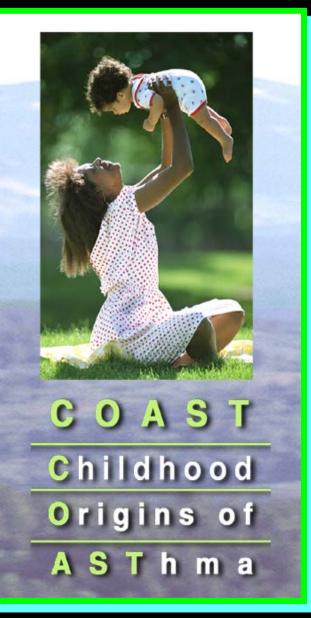
• ~200 ppm range of chemical shifts for ¹²⁹Xe


¹²⁹Xe vs. ³He: Ventilation


¹²⁹Xe ventilation in disease

¹²⁹Xe vs. ³He: ADC

¹²⁹Xe in the lung



¹²⁹Xe to the rescue:

 For applications pioneered with ³He, ¹²⁹Xe can provide comparable results

 Added value of ¹²⁹Xe in providing regional quantification of gas uptake or exchange

Motivation

Funded by the NHLBI

COAST Childhood Origins of ASThma

A prospective birth cohort study designed to evaluate genetic and environmental factors contributing to the development of childhood asthma

• 287 children enrolled at birth

• At-risk: Parental allergies and asthma

• *Key Collaboration – PI Dr. Robert Lemanske, Pediatrics and Allergy and Immunology, Medical Physics, Radiology*

Summary

- Lung disease is a major worldwide health issue with substantial societal impact.
- Hyperpolarized-gas MRI offers unique functional & structural information about the healthy & diseased lung.
- Xe-129 can be used as an alternate to He-3
- He-3 is the only choice for pediatrics.