

Stable Isotope Enrichment Technology Development

1st Workshop on Isotope Federal Supply and Demand January 11-12, 2012 Dennis R. Phillips

Office of Nuclear Physics, Isotope Production R&D

FINAL REPORT

FINAL REPORT

-uture

Isotopes for

the Nation's

A long range plan

NSAC-I Report Recommendations

Recommendation 5

Compelling Research Opportunities using Isotopes R&D efforts should be conducted to prepare for the reestablishment of a domestic source of mass-separated stable and radioactive research isotopes

Recommendation III.1

 Construct and operate an electromagnetic isotope separator facility for stable and long-lived radioisotopes.

Stable Nuclides with Very Limited Supply at ORNL

Isotope	Years Remaining (2008)	Years Remaining (2012)
Gd-157 (second pass)	0	0
Pb-204 (second pass)	0	0
Pb-205	*	0
Pb-207 (second pass)	0	0
Ru-96	0	0
Sm-150 (second pass)	0	0
Ta-181	0	0
V-51	0	0
W-180 (second pass)	0	0
Gd-157	0.2	0.5

Stable Nuclides with <15 year Supply at ORNL

Isotope	Years Remaining (2008)	Years Remaining (2012)
Ni-62	3.9	4.5
Nd-150	7.9	4.8
Ga-69	3.7	5.9
W-183	*	7.6
W-182	*	9.9
Se-76	*	10.2
W-184	*	10.6
CI-35	*	11.9
Mo-100	*	12.1
Pt-195	12.0	13.0
Ag-109	14.3	14.2

Stable Nuclides with <20 year Supply at ORNL

Isotope	Years Remaining (2008)	Years Remaining (2012)
Mo-98	*	16.0
Ba-137	19.0	16.2
Ba-136	7.6	17.4
Zr-94	18.5	18.0
Sm-149	19.6	18.4
TI-203	*	18.9

ORNL Separator Project

- Design, fabricate, and test one research capable EMIS device with minimum on-collector ion-current of 10 mA.
- Engineering evaluation of gas-centrifuge-based enrichment system for select stable isotopes (Mo, W, Ni, Ge).
- Conceptualize a facility integrating EMIS technologies to provide enrichment capability equivalent to 3 to 6 Calutron EMIS systems.
 - Three production scale 100 mA EMIS
 - Small modular centrifuges
- Optimize to produce targeted isotopes at high rates, reasonable cost, scale as needed.
- Project commenced October, 2009

EMIS Design

1. Ribbon-shaped ion beam

- 100 mm max height
- Freeman ion source
- 1200° C oven
- 2. Magnetic quadrupole doublet for beam focus
- 3. 60° sector magnet for separation
- 4. Standard collector pockets
 - Re-useable graphite lined
 - Viable for most stable elements

EMIS Commissioned December 15, 2011

		 Commissioned with noble gases Focused Ar-40 beam on collector showing shape/size in agreement with 3D Lorentz simulations
⁸⁴ Kr (57.00%)	⁸² Kr (11.58%)	■Testing continues
⁸⁶ Kr (17.30%)	← ⁸⁰ Kr (2.28%)	Design studies to scale up ion source to
⁸³ Kr (11.49%)	→ ⁷⁸ Kr (0.35%) Not Visible	100 mA on collector

Integrated Spin System (ISS) Plasma Separator

Consecutive frames from high speed camera (45000 frames per second) showing ~17000 rpm rotation of argon plasma.

Supersonic Fluid Dynamics, SBIR Funded

Principle of the Nozzle Separation

Single stage separator = ~\$2M

Nanoparticle Formation/ Assymetric Cross-Flow

FY10 Funded Project, UPR, Mayagüez

Applicable to elements with two naturally occurring isotopes of widely disparate abundance

- Modest enrichment of isotope of low abundance
- High enrichment of isotope of high abundance

■ Vanadium (Natural: V-50(0.25%) and V-51(99.75%)

- Theoretical enrichments: V-50 (3.5%) and V-51 (99.99%)
- V-51 used as a reference material for solid-state NMR analysis (currently 0 years of remaining DOE inventory)

■ Uranium (Natural: U-235(0.72%) and U-238(99.27%)

- Maximum theoretical enrichments: U-235 (~5.8%) and U-238 (99.99%)
- "Safely" produces LWR reactor grade U-235
- Highly enriched U-238 useful for physics targets for production of neutron rich heavy isotopes

Conclusion

The NP Isotope Program takes seriously the recommendation to develop new isotope separation capability.

Ongoing promising R&D gives reason to be optimistic that a viable new technology will emerge.

Questions?

Mass Dispersion, Current Configuration

- Magnet designed for
 20 amu < A < 208 amu
- Optimized for a A = 100 amu as mid-point
- Magnet capable of bending the path for A up to 450 amu
- Slight amount of distortion in the magnetic field for masses above 250
- Can make adjustments in the flight path to increase the separation for heavier isotopes

Enrichment Technologies

Electromagnetic separationCentrifugal separation

- Gas centrifuge
- Spin System Plasma
- Distillation
- Diffusion
 - Gaseous
 - Thermal
 - Barrier
- Supersonic fluid dynamics
- Laser
- Chemical/physical kinetic isotope effect

Project Risk Mitigation

- Master 3D CAD model directly linked to simulation software and fabrication drawings.
- Components ORNL designed. Manufactured in four different countries. Seamlessly fit together with the use of highly accurate CAD models.
- Measured magnetic field data imported into simulations to verify accuracy of design and fabrication before shipment.
- Separator fully operable on the day the last component (sector magnet) was installed.

LANL Radioactive Sample Isotope Separator (RSIS)

- Built, hot-cell installed by Isotope Program in late 1990s for strontium radioisotope separations
- Commissioned 2003 with stable strontium
- Cold stand-by since 2004.
- LANL proposing to update and restart for radioisotope separation.

Advantage of ISS Technology

- Electromagnetically generate a rotating plasma, with very high rotation velocity
- Introduce material to be isotopically separated at center of plasma
- Separation occurs with strong dependence on rotational velocity and temperature

$$q(r) + 1 = \exp\left(\frac{\omega^2 r^2 \Delta m}{2kT}\right)$$

- Rotational velocities exceeding 1.4 x 10³ m/s (cf 600 m/s for classical gas centrifuge separation)
- Can be applied to non-gaseous forms of material
- Potentially highly efficient (kg quantities)