Using a Multiple Isotope Approach to Understand Uranium Cellular Effects

Alexandra C. Miller, PhD, Uniformed Services University, Armed Forces Radiobiology Research Institute, 8901 Wisconsin Ave. Bethesda, MD 20889

What prompted DU Research?

1991 Gulf War

Friendly fire incidents

Soldiers injured with depleted uranium shrapnel

Comparison of the Relative Contribution of Uranium Isotopes*

(natural and depleted)

Isotope	Specific Activity (µCi/g)	DU SA by WT% (μCi/g)	Natural Uranium SA by WT% (μCi/g)
238၂	0.333	0.332	0.331
²³⁶ U (not naturally occurring)	63.6	0.0001	0
235	2.2	0.0044	0.051
234	6200	0.093	0.310
Total		0.4295	0.692

^{*}Contribution of the daughter products is not included.

Short-Term Carcinogenicity Tests: Relative Comparison of DU, Nickel, and Alpha Particles

Miller, et al, Environmental Health Perspectives, Vol. 106, 1998;

Miller, et al, Carcinogenesis, Vol. 22, 2001.

Miller, et. al., J Environ Radioact. 2003;64(2-3):247-59, 2003

Miller, et al., Reviews on Environmental Health, Vol 22, 75-94, 2007

How to Answer Question Regarding DU Radiation Specific Effects??

Uranium Isotope Comparison Model System (Uranyl nitrate)

Uranium Isotopes: Specific Activity

 ^{235}U 2.2

DU 0.43

 ^{238}U 0.33

Radiation Effects of DU: In vitro studies with Uranium Isotopes

Miller, et al., Radiat Prot Dosimetry, 99(1-4):275-8, 2002 Miller, et al., Radiat Measurements, 42(1029-1032), 2007

Radiation Effects of DU: In vitro studies with Uranium Isotopes

Uranium causes non-targeted "bystander effects"

Methodology:

Mix control cells with uranium isotope-treated cells

Measure survival, transformation

FINDINGS:

- Uranium causes radiation damage in cells not directly hit by radiation
- ✓ Non-radioactive heavy metal does not cause effects in "bystander cells"

Conclusions

The use of uranium isotopes has enabled us to:

- 1) Understand basic radiobiology mechanisms
- 2) Examine the role of radiation in DU cellular effects
- 3) Evaluate DU radiation "bystander" effects

Acknowledgements

AFRRI – My Lab

Mike Stewart

Rafael Rivas

Danny Beltran

Jiaquan Xu

Kia Brooks

Nalaja Marcus

Tim Whittaker

Columbia University

Tom Hei

David Brenner

Steve Marino

Gerhard Randers-

Pehrson

Steve Mitchell

University Of Paris

Paul Lison

Robert Merlot

Jean Michel

Lillian Crepin

This work was supported by AFRRI/USUHS Intramural Projects RAB5AA and RAB5AF